G. Morini et al. / Bioorg. Med. Chem. 16 (2008) 9911–9924
9923
6.2.1. Docking into the rat H3 receptor model
References and notes
Docking studies were performed with Glide 3.5,56 employing a
previously developed rat H3 receptor model.57 Protein structure
was subjected to the Protein Preparation procedure implemented
in Glide, applying the ‘Preparation Only’ procedure without neu-
tralization of amino acid residues. Docking experiments were per-
formed starting from minimum-energy conformations of the
ligands placed in arbitrary positions, within a region centered on
amino acid Asp114 in TM3, using enclosing and bounding boxes
of 46 and 14 Å on each side, respectively. Compounds 3g, 5b, and
7a were docked in their diprotonated state, compound 5d in the
protonated form. Van der Waals radii of the protein were not
scaled, whereas van der Waals radii of the ligand atoms with par-
tial atomic charge lower than |0.15| were scaled by 0.80. Standard
precision mode was applied and poses with a Coulomb–van der
Waals score greater than 0 kcal/mol were rejected. Docking solu-
tions were ranked according to their Emodel value.
1. Parsons, M. E.; Ganellin, C. R. Br. J. Pharmacol. 2006, 147, S127.
2. Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. Nature (London) 1983, 302, 832.
3. Clapham, J.; Kilpatrick, G. J. Br. J. Pharmacol. 1992, 107, 919.
4. Schlicker, E.; Fink, K.; Detzner, J.; Göthert, M. J. Neural. Transm. 1993, 93, 1.
5. Schlicker, E.; Betz, R.; Göthert, M. Arch. Pharmacol. 1988, 337, 588.
6. Burgaud, J. L.; Oudart, N. J. Pharm. Pharmacol. 1993, 45, 955.
7. Leurs, R.; Bakker, R. A.; Timmerman, H.; de Esch, I. J. P. Nat. Rev. Drug Discov.
2005, 4, 107.
8. Wijtmans, M.; Leurs, R.; de Esch, I. Expert Opin. Invest. Drugs 2007, 16, 967.
9. Arrang, J. M.; Garbag, M.; Lancelot, J. C.; Lecomte, J.-M.; Pollard, H.; Robba, M.;
Schunack, W.; Schwartz, J.-C. Nature 1987, 327, 117.
10. Barocelli, E.; Ballabeni, V.; Caretta, A.; Bordi, F.; Silva, C.; Morini, G.;
Impicciatore, M. Agents Actions 1993, 38, 158.
11. Leurs, R.; Vollinga, R. C.; Timmerman, H. Prog. Drug Res. 1995, 45, 107.
12. Ganellin, C. R.; Leurquin, F.; Piripitsi, A.; Arrang, J.-M.; Garbarg, M.; Ligneau, X.;
Schunack, W.; Schwartz, J.-C. Arch. Pharm. Weinheim 1998, 331, 395.
13. Liedtke, S.; Flau, K.; Kathmann, M.; Schlicker, E.; Stark, H.; Meier, G.; Schunack,
W. Naunyn-Schmiedeberg’s Arch. Pharmacol 2003, 367, 43.
14. La Bella, F. S.; Queen, G.; Glavin, G.; Durant, G.; Stein, D.; Brandes, L. J. Br. J.
Pharmacol. 1992, 107, 161.
The horizontal and vertical poses of compound 7a were merged
into the H3 receptor model. The complexes were energy-mini-
mized with MMFF94s force field to a gradient of 0.05 kJ/mol Å with
fixed protein backbone and they were submitted to molecular
dynamics (MD) simulation to evaluate their stability. MD was per-
formed with MMFF94 force field,58 with a time step of 1 fs, a
dielectric constant of 1 and a non-bonded cutoff of 8 Å, for 1 ns
at 310 K after equilibration for 100 ps, with fixed position of the
backbone atoms. The last conformation of each MD simulation
was energy-minimized as already described, and the resulting
structures are depicted in Figure 2.
15. Yang, R.; Hey, J. A.; Aslanian, R.; Rizzo, C. A. Pharmacology 2002, 66, 128.
16. Harper, E. A.; Shankley, N. P.; Black, J. W. Br. J. Pharmacol. 1999, 128, 881.
17. Alves-Rodrigues, A.; Leurs, R.; Wu, T.; Prell, G.; Foged, C.; Timmerman, H. Br. J.
Pharmacol. 1996, 118, 2045.
18. Ballabeni, V.; Impicciatore, M.; Bertoni, S.; Magnanini, F.; Zuliani, V.; Vacondio,
F.; Barocelli, E. Inflamm. Res. 2002, 51(Suppl. 1), ), S55.
19. Cowart, M.; Altenbach, R.; Black, L.; Faghih, R.; Zhao, C.; Hancock, A. A. Mini-
Rev. Med. Chem. 2004, 4, 979.
20. Stark, H. Expert Opin. Ther. Pat. 2003, 13, 851.
21. Celanire, S.; Wijtmans, M.; Talaga, P.; Leurs, R.; de Esch, I. J. P. Drug Discov.
Today 2005, 10, 1613.
22. Letavic, M. A.; Barbier, A. J.; Dvorak, C. A.; Carruthers, N. I. Prog. Med. Chem.
2006, 44, 181.
23. Hudkins, R. L.; Raddazz, R. Annu. Rev. Med. Chem. 2007, 42, 49.
24. Bembenek, S. D.; Keith, J. M.; Letavic, M. A.; Apodaca, R.; Barbier, A. J.; Dvorak,
L.; Aluisio, L.; Miller, K. L.; Lovenberg, T. W.; Carruthers, N. I. Bioorg. Med. Chem.
2008, 16, 2968.
6.2.2. Docking into the mouse acetylcholinesterase active site
Since the three-dimensional coordinates of rat acetylcholines-
terase are not available, the structure of the mouse acetylcholines-
terase was used for docking studies, given the high sequence
similarity and the identical composition of amino acids facing the
active site in the rat and mouse enzyme.59 The crystallographic
coordinates of acetylcholinesterase complex with succinylcholine
(PDB ID: 2HA2)52 were taken from the RCSB Protein Data Bank.60
This crystal structure has already been used to perform docking
studies for di-basic acetylcholinesterase inhibitors.46 The acetyl-
cholinesterase structure was prepared by deleting succinylcholine
and water molecules and by adding hydrogen atoms. Protein struc-
ture was subjected to the Protein Preparation procedure imple-
mented in Glide 3.5,56 applying the standard ‘Preparation and
Refinement’ protocol, without neutralization of amino acid resi-
dues. Docking experiments were performed starting from mini-
mum-energy conformations of the ligands placed in arbitrary
positions, within a region centered on the inhibitor succinylcho-
line, using enclosing and bounding boxes of 26 and 14 Å on each
side, respectively. Compound 12 was docked in the diprotonated
form and donepezil with protonated piperidine ring. Van der Waals
radii of the protein were not scaled, whereas van der Waals radii of
the ligand atoms with partial atomic charge lower than |0.15| were
scaled by 0.80. Standard precision mode was applied and poses
with a Coulomb–van der Waals score greater than 0 kcal/mol were
rejected. Docking solutions were ranked according to their Emodel
value. The best scoring solutions of compound 12 and donepezil
were merged into acetylcholinesterase and the complexes are
shown in Figure 3.
25. Petroianu, G.; Arafat, K.; Sasse, B. C.; Stark, H. Pharmazie 2006, 61, 179.
26. Hey, J.; Aslanian, R. G. WO02072093, 2002.
27. Barocelli, E.; Ballabeni, V.; Manenti, V.; Flammini, L.; Bertoni, S.; Morini, G.;
Comini, M.; Impicciatore, M. Pharmacol. Res. 2006, 53, 226.
28. Bertoni, S.; Flammini, L.; Manenti, V.; Ballabeni, V.; Morini, G.; Comini, M.;
Barocelli, E. Pharmacol. Res. 2007, 55, 111.
29. Rivara, M.; Zuliani, V.; Cocconcelli, G.; Morini, G.; Comini, M.; Rivara, S.; Mor,
M.; Bordi, F.; Barocelli, E.; Ballabeni, V.; Bertoni, S.; Plazzi, P. V. Bioorg. Med.
Chem. 2006, 14, 1413.
30. Morini, G.; Comini, M.; Rivara, M.; Rivara, S.; Lorenzi, S.; Bordi, F.; Mor, M.;
Flammini, L.; Bertoni, S.; Ballabeni, V.; Barocelli, E.; Plazzi, P. V. Bioorg. Med.
Chem. Lett. 2006, 16, 4063.
31. Bertoni, S.; Ballabeni, V.; Flammini, L.; Saccani, F.; Domenichini, G.; Morini, G.;
Comini, M.; Rivara, M.; Barocelli, E. Naunyn-Schmiedeberg’s Arch. Pharmacol.
2008, 378, 335.
32. Marquais-Bienewald, S.; Hoelzl, W.; Preuss, A.; Mehlin, A.; Brunner, F. PCT Int.
Appl. WO 04035521, 2004.
33. Binet, J.; Thomas, D.; Benmbarek, A.; De Fornel, D.; Reaut, P. Chem. Pharm. Bull.
2002, 50, 316.
34. Kilpatrick, G. J.; Michel, A. D. Agents Actions 1991, 33, 69.
35. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.;
Jackson, M. R.; Erlander, M. G. Mol. Pharmacol. 1999, 55, 1101.
36. Liu, C.; Ma, X.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li,
X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Mol. Pharmacol. 2001, 59,
420.
37. Apodaca, R.; Dvorak, C. A.; Xiao, W.; Barbier, A. J.; Boggs, J. D.; Wilson, S. J.;
Lovenberg, T. W.; Carruthers, N. I. J. Med. Chem. 2003, 46, 3938.
38. Denizot, F.; Lang, R. J. Immunol. Methods 1986, 89, 271.
39. Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Feather-Stone, R. M. Biochem.
Pharmacol. 1961, 7, 88.
40. Furchgott, R. F.. In Handbook of Experimental Pharmacology; Blanschko, E.,
Muscholl, E., Eds.; Springer: Berlin, 1972; Vol. 33, pp 283–335.
41. Van Rossum, J. M. Arch. Int. Pharmacodyn. Ther. 1963, 143, 299.
42. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
43. Tumiatti, V.; Andrisano, V.; Banzi, R.; Bartolini, M.; Minarini, A.; Rosini, M.;
Melchiorre, C. J. Med. Chem. 2004, 47, 6490.
44. Bolognesi, M. L.; Banzi, R.; Bartolini, M.; Cavalli, A.; Tarozzi, A.; Andrisano, V.;
Minarini, A.; Rosini, M.; Tumiatti, V.; Bergamini, C.; Fato, R.; Lenaz, G.; Hrelia,
P.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. J. Med. Chem. 2007, 50, 4822.
45. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini,
M.; Melchiorre, C. J. Med. Chem. 2008, 51, 347.
Acknowledgments
The work was supported by the Italian Ministero dell’Istruzione,
dell’Università e della Ricerca. The Centro Interdipartimentale Mis-
ure and the Settore Innovazione e Tecnologie Informatiche of the
University of Parma are gratefully acknowledged for providing
NMR instrumentation and software licences.
46. Xie, Q.; Wang, H.; Xia, Z.; Lu, M.; Zhang, W.; Wang, X.; Fu, W.; Tang, Y.;
Sheng, W.; Li, W.; Zhou, W.; Zhu, X.; Qiu, Z.; Chen, H. J. Med. Chem. 2008,
51, 2027.
47. Uveges, A. J.; Kowal, D.; Zhang, Y.; Spangler, T. B.; Dunlop, J.; Semus, S.; Jones, P.
G. J. Pharmacol. Exp. Ther. 2002, 301, 451.