474
E. Garnier et al.
LETTER
These first optimized conditions5 were used for a compar-
ative study with different heteroarylamines (Table 1).9
Various five-membered heterocycles were reacted with
triazine 1 and after ‘one-pot’ cyclization, the correspond-
ing tricyclic fused heterocycles were isolated in 62% to
71% isolated yield (Table 1, runs 1–6). Six-membered
ring amines also react. For example, 2-aminopyrimidine
(2h) was converted to compound 3h in 59% yield
(Table 1, run 7).
(4) (a) Jonckers, T. H. M.; Maes, B. U. W.; Lemière, G. L. F.;
Dommisse, R. Tetrahedron 2001, 57, 7027. (b) Košmrlj, J.;
Maes, B. U. W.; Lemière, G. L. F.; Haemers, A. Synlett
2000, 1581. (c) De Riccardis, F.; Johnson, F. Org. Lett.
2000, 2, 293. (d) Schoffers, E.; Olsen, P. D.; Means, J. C.
Org. Lett. 2001, 3, 4221. (e) Yin, J.; Zhao, M. M.; Huffman,
M. A.; McNamara, J. M. Org. Lett. 2002, 4, 3481.
(5) Garnier, E.; Audoux, J.; Pasquinet, E.; Suzenet, F.; Poullain,
D.; Lebret, B.; Guillaumet, G. J. Org. Chem. 2004, 69, 7809.
(6) For reviews about metal-catalyzed C–N bond formation,
see: (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003,
36, 234. (b) Baranano, D.; Mann, G.; Hartwig, J. F. Curr.
Org. Chem. 1997, 1, 287. (c) Muci, A. R.; Buchwald, S. L.
Cross-Coupling Reactions, In Topics in Current Chemistry,
Vol. 219; Springer-Verlag: Berlin / Heideberg, 2002, 131.
(d) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805.
(7) For chemical shift assignment, see: Martin, M. L.;
Gouesnard, J.-P. In 15N-NMR Spectrometry; Diehl, P.;
Fluck, E.; Kosfeld, R., Eds.; Springer-Verlag: New York,
1981, 4.
(8) Garratt, P. J. Comprehensive Chemistry II, Vol. 4; Katritzky,
A. R.; Rees, C. W.; Scriven, E. F. W., Eds.; Pergamon Press:
Oxford UK, 1996, 127.
We have demonstrated that palladium-catalyzed N-het-
eroarylation conditions can be used with ethyl 5-chloro-3-
methylsulfanyl-1,2,4-triazine-6-carboxylate (1) and
various electron-poor amines 2a–h. Our optimized cou-
pling conditions were successfully applied to the ‘one-
pot’ synthesis of compounds 3a,c–h, in good yields.
Current efforts are directed towards the reactivity of the
methylsulfanyl group in order to increase the energetic
properties of the final products. These studies will be
communicated in due course.
References and Notes
(9) Typical Procedure for the Pd-Catalyzed N-Arylation
Cyclization.
(1) (a) Millar, R. W.; Philbin, S. P.; Claridge, R. P.; Hamid, J.
Propellants, Explos., Pyrotech. 2004, 81. (b) Sikder, A. K.;
Sikder, N. J. Hazard. Mater. 2004, A112, 1. (c) Singh, G.;
Singh Kapoor, I. P. J. Hazard. Mater. 1999, A68, 155.
(d) Chapman, R. D.; Wilson, W. S. Thermochim. Acta 2002,
384, 229.
A three-necked flask was flushed with N2 and charged with
xantphos (20 mol%) and dry dioxane (5 mL). After
degassing, Pd(OAc)2 (10 mol%) was added and the mixture
was stirred under N2 for 10 min. In another three-necked
round-bottom flask, compound 1 (0.100 g, 1.0 equiv),
heteroarylamine (1.2 equiv) and K2CO3 (20 equiv) were
poured into dry dioxane (7 mL). Then, the Pd(OAc)2/
xantphos solution was added via cannula. The resulting
mixture was subsequently heated to reflux and vigorously
stirred until 1 has disappeared. After cooling down, the solid
material was filtered off and washed with CH2Cl2 (20 mL)
and MeOH (20 mL). The solvent was evaporated and the
resulting crude product was purified by flash column
chromatography using CH2Cl2–MeOH (99:1 v/v) as eluent.
Characterization of Compounds 3a and 3b.
(2) For C–C bond formation, see: (a) Alphonse, F.-A.; Suzenet,
F.; Keromnes, A.; Lebret, B.; Guillaumet, G. Synlett 2002,
447. (b) Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret,
B.; Guillaumet, G. Org. Lett. 2003, 5, 803. (c) Alphonse,
F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G.
Synthesis 2004, 2893. (d) For general chemistry, see:
Neunhoffer, H. Comprehensive Chemistry II, Vol. 6;
Katritzky, A. R.; Rees, C. W.; Scriven, E. F. W., Eds.;
Pergamon Press: Oxford UK, 1996, 507. For inverse-
electron-demand Diels–Alder reaction, see: (e) Lipinska, T.
Tetrahedron Lett. 2002, 43, 9565. (f) Lahue, B.; Wan, Z.-
K.; Snyder, J. K. J. Org. Chem. 2003, 68, 4345. (g) Lahue,
B. R.; Lo, S.-M.; Wan, Z.-K.; Woo, G. H. C.; Snyder, J. K.
J. Org. Chem. 2004, 69, 7171. (h) Branowska, D. Synthesis
2003, 2096. (i) Bilbao, E. R.; Alvarado, M.; Masguer, C. F.;
Ravina, E. Tetrahedron Lett. 2002, 43, 3551 . For fused
1,2,4-triazine derivatives, see: (j) Garnier, E.; Guillard, J.;
Pasquinet, E.; Suzenet, F.; Poullain, D.; Jarry, C.; Léger, J.-
M.; Lebret, B.; Guillaumet, G. Org. Lett. 2003, 5, 4595.
(k) Mojzych, M.; Rykowski, A. Heterocycles 2004, 63,
1829. (l) Chupakhin, O. N.; Rusinov, G. L.; Beresnev, D. G.;
Charushin, V. N.; Neunhoeffer, H. J. Heterocycl. Chem.
2001, 38, 901. (m) Nagai, S.-I.; Miyachi, T.; Nakane, T.;
Ueda, T.; Uozumi, Y. J. Heterocycl. Chem. 2001, 38, 379.
(3) (a) Pesson, M.; Antoine, M.; Benichon, J.-L.; de Lajudie, P.;
Horvath, E.; Leriche, B.; Patte, S. Eur. J. Med. Chem. 1980,
15, 269. (b) Huang, J. J. J. Org. Chem. 1985, 50, 2293.
(c) Taylor, E. C.; McDaniel, K. F.; Warner, J. C.
Compound 3a: 1H NMR (200 MHz, DMSO): d = 2.10 (s, 3
H, CH3), 11.97 (br s, 1 H, NH) ppm. 13C NMR (50 MHz,
DMSO): d = 13.1 (CH3), 144.8 (C10a), 153.7 (C5a), 154.1
(C10), 154.6 (C4a), 165.5 (C7), 178.1 (C3) ppm. 15N NMR (30
MHz, DMSO): d = –296, –258 (NH), –133, –154, –54, –49,
5, 12 (NO2) ppm. IR: n = 3223, 2975, 1652, 1521, 1352,
1023 cm–1. MS: m/z = 281 [M + 1]. Anal. Calcd for
C7H4N8O3S: C, 30.00; H, 1.44; N, 39.99. Found: C, 30.11;
H, 1.48; N, 40.05.
Compound 3b: 1H NMR (200 MHz, DMSO): d = 1.30 (t,
J = 8.1 Hz, 3 H, CH3), 2.37 (s, 3 H, SCH3), 4.14 (q, J = 8.1
Hz, 2 H, CH2), 7.03 (dd, J2¢,4¢ = 1.1 Hz, J3¢,4¢ = 7.4 Hz, 1 H,
H4¢), 7.43 (dd, J2¢,3¢ = 7.9 Hz, J3¢,4¢ = 7.4 Hz, 2 H, H3¢ and H5¢),
7.93 (dd, J2¢,4¢ = 1.1 Hz, J2¢,3¢ = 7.9 Hz, 2 H, H2¢ and H6¢),
11.43 (br s, 1 H, NH) ppm. 13C NMR (50 MHz, DMSO): d =
12.1 (CH3), 14.07 (CH3), 62.0 (CH2), 122.9 (C4¢), 123.5 (C2¢
and C6¢), 126.6 (C3¢ and C5¢), 140.5 (C6), 149.4 (C1¢), 155.6
(C5), 163.8 (C=O), 188.1 (C3) ppm. IR: n = 3188, 2932,
1726, 1663 cm–1. MS: m/z = 291 [M + 1]; mp 85–87 °C.
Anal. Calcd for C13H14N4O2S: C, 53.78; H, 4.86; N, 19.30.
Found: C, 54.01; H, 4.54; N, 19.12.
Tetrahedron Lett. 1987, 28, 1977. (d) Piazza, G. A.;
Pamukcu, R. Am. Pat. Appl. US6060477, 2000; Chem.
Abstr. 2000, 132, 321870.
Synlett 2006, No. 3, 472–474 © Thieme Stuttgart · New York