7020
M. Matveenko et al. / Tetrahedron Letters 49 (2008) 7018–7020
10. (a) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310; See also:
(b) Kraus, G. A.; Gorgonga, T. Synthesis 2007, 1765; (c) Kipassa, N. T.; Okamura,
H.; Kina, K.; Hamada, T.; Iwagawa, T. Org. Lett. 2008, 10, 815.
11. Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem., Int. Ed. 2007, 46,
5734.
12. (a) Laumen, K.; Schneider, M. Tetrahedron Lett. 1984, 25, 5875. and references
therein; (b) Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc.
1984, 106, 3695.
13. (a) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2006, 128, 6312; (b) Mita, T.; Fukuda, N.; Roca, F. X.; Kanai, M.; Shibasaki, M.
Org. Lett. 2007, 9, 259; (c) Morita, M.; Sone, T.; Yamatsugu, K.; Sohtome, Y.;
Matsunaga, S.; Kanai, M.; Watanabe, Y.; Shibasaki, M. Bioorg. Med. Chem. Lett.
2008, 18, 600.
catechol 2. Given the capacity for the large-scale production of diol
2 from this arene,24 the present work has the potential to provide a
useful new route to compound 1. We are currently working on a
second generation synthesis of TamifluÒ that exploits the capacity
of the route described here to deliver selectively the mono-pro-
tected forms 9 and 10 of diol 11. Results will be reported in due
course.
Acknowledgments
14. Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. J. Org. Chem. 2008, 73, 4895. and
references therein.
15. Bromfield, K. M.; Gradén, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem.
Commun. 2007, 3183.
We thank the Institute of Advanced Studies and the Australian
Research Council for financial support.
16. Trost, B. M.; Zhang, T. Angew. Chem., Int. Ed. 2008, 47, 3759.
17. Shie, J.-J.; Fang, J.-M.; Wong, C.-H. Angew. Chem., Int. Ed. 2008, 47, 5788.
Supplementary data
18. Compound
2 can be obtained from the Aldrich Chemical Co. (Catalogue
Experimental procedures, product characterization, and 1H or
13C NMR spectra for compounds 4–6 and 8–11 are provided. Sup-
plementary data associated with this article can be found, in the
Number 489492) or from Questor, Queen’s University of Belfast, Northern
methods for generating cis-1,2-dihydrocatechols by microbial dihydroxylation
of the corresponding aromatics, as well as on the synthetic applications of
these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichim.
Acta 1999, 32, 35; (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A.;
McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vögtle, M. Pure Appl. Chem. 2003, 75,
223; (c) Johnson, R. A. Org. React. 2004, 63, 117.
References and notes
19. Matveenko, M.; Banwell, M. G.; Willis, A. C. Tetrahedron 2008, 64, 4817.
20. Liu, R.; Herron, S. R.; Fleming, S. A. J. Org. Chem. 2007, 72, 5587. and references
therein.
21. Various copper catalysts were examined for their capacity to effect this
transformation, and Cu(CH3CN)4PF6 proved to be the most effective.
22. Selected physical and spectral data for compound 11 are presented in the
Supplementary data.
1. (a) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.;
Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R.
C. J. Am. Chem. Soc. 1997, 119, 681; (b) Lew, W.; Chen, X.; Kim, C. U. Curr. Med.
Chem. 2000, 7, 663; (c) McClellan, K.; Perry, C. M. Drugs 2001, 61, 263. and
references therein.
2. Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao,
S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 11892.
3. (a) Fuyuno, I. Nature 2007, 446, 358; (b) Long, M. Cell Res. 2007, 17, 309.
4. Russell, R. J.; Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.;
Hay, A. J.; Gamblin, S. J.; Skehel, J. J. Nature 2006, 443, 45. and references
therein.
6. Farina, V.; Brown, J. D. Angew. Chem., Int. Ed. 2006, 45, 7330.
7. Abrecht, S.; Harrington, P.; Iding, H.; Karpf, R.; Trussardi, R.; Wirz, B.; Zutter, U.
Chimia 2004, 58, 621.
8. For a recent survey of activities in this area see: Shibasaki, M.; Kanai, M. Eur. J.
Org. Chem. 2008, 1839. and references therein.
23. X-ray crystal data for compound 11: C13H22BrNO4, M = 336.23, T = 200(1) K,
monoclinic, space group P21, Z = 2, a = 8.1118(3), b = 6.9730(2),
c = 13.3490(4) Å, b = 98.0424(17)° V = 747.64(4) Å3, Dx = 1.493 g cmꢀ3
,
3414
(I)]; Rw = 0.044 (all
data), S = 0.99. Images were measured on a Nonius Kappa CCD diffractometer
(MoK graphite monochromator, k = 0.71073 Å). Crystallographic data for
unique data (2hmax = 55°); R = 0.025 [for 2899 with I > 2.0
r
a
,
compound 11 have been deposited with the Cambridge Crystallographic Data
Center (CCDC no. 701227). These data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email:
data_request@ccdc.cam.ac.uk, fax: +44 1223 336033, or via http://
9. Yamatsugu, K.; Kamijo, S.; Suto, Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett.
2007, 48, 1403.
24. See, for example: Ballard, D. G. H.; Courtis, A.; Shirley, I. M.; Taylor, S. C.
Macromolecules 1988, 21, 294.