10.1002/chem.201702173
Chemistry - A European Journal
FULL PAPER
e) S. Díez-González, S. P. Nolan, Coord. Chem. Rev., 2007, 251, 874–
883.
exquisite control exerted from both steric and electronic
functions instead of a single dominant factor. The same was
illustrated with a set of five- and six-membered iridacyclic
[2]
[3]
a) C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2956‒2965; b) C. A.
Tolman, J. Am. Chem. Soc., 1970, 92 , 2953‒2956; c) H. Clavier, S. P.
Nolan. Chem. Commun., 2010, 46, 841‒861.
complexes, [Cp*Ir(CNHC-Caryl)I], applied in
a model hydride
transfer catalysis. The results established that the
multidimensional stereoelectronic synergy among all the
relevant factors — yaw angle, bite angle, ligand electronic, as
well as electronic of the metal center, governed the hydride
donor ability (hydricity) of the complexes during catalysis. In
effect, the six-membered chelate complexes satisfying all the
criteria of having small yaw and large bite angles, strong donor
ligand, and electron-rich metal, were catalytically more active
than their five-membered analogues which lack those properties.
A frontier molecular orbital analysis validated the significant role
of the above stereoelectronic synergistic effect associated with
the chelate ring to increase the LUMO energy of the hypothetical
‘[Cp*Ir(CNHC-Caryl)]+’ fragment derived from the six-membered
complexes, in comparison to their five-membered congeners,
and thereby enhance the hydride donor ability of the former
complexes during catalysis.
a) A. R. Chianese, X. Li, M. C. Janzen, J. W. Faller, R. H. Crabtree,
Organometallics, 2003, 22, 1663‒1667; b) R. Dorta, E. D. Stevens, N.
M. Scott, C. Costabile, L. Cavallo, C. D. Hoff, S. P. Nolan, J. Am. Chem.
Soc., 2005, 127, 2485‒2495; c) G. Altenhoff, R. Goddard, C. W.
Lehmann, F. Glorius, J. Am. Chem. Soc., 2004, 126, 15195‒15201; d)
Q. Teng, H. V. Huynh, Dalton Trans., 2017, 46, 614–627; e) R. H.
Crabtree, Chem. Rev., 2015, 115, 127-150.
[4]
E. S. Wiedner, M. B. Chambers, C. L. Pitman, R. M. Bullock, A. J. M.
Miller, A. M. Appel, Chem. Rev., 2016, 116, 8655−8692.
D. Wang, D. Astruc, Chem. Rev., 2015, 115, 6621-6686.
a) J. W. Ogle, S. A. Miller, Chem. Commun., 2009, 5728‒5730; b) S.
Semwal, D. Ghorai, J. Choudhury, Organometallics, 2014, 33,
7118−7124.
[5]
[6]
[7]
[8]
C. H. Leung, C. D. Incarvito, R. H. Crabtree, Organometallics, 2006, 25,
6099‒6107.
a) Z. Freixa, P. W. N. M. van Leeuwen, Dalton Trans., 2003, 1890-
1901; b) M-N., Birkholz, Z. Freixa, P. W. N. M. van Leeuwen, Chem.
Soc. Rev., 2009, 38, 1099–1118.
[9]
M. Poyatos, J. A. Mata, E. Peris, Chem. Rev., 2009, 109, 3677‒3707.
[10] The crystal structure of complex 6 was reported and the structural data
reported therein was used for calculation of yaw and bite angles; R.
Corberán, M. Sanaú, E. Peris, J. Am. Chem. Soc., 2006, 128 , 3974–
3979. CCDC numbers 1456787-1456791, 1480490, 1480492-1480494
contain the crystallographic information of the complexes 1-5, and 7-10.
[11] A similar hydride transfer catalysis was also performed with an imine as
substrate and sodium formate as hydride donor, using 1 and 6 as
precatalysts. The rate of this reaction was also found to be higher with
6 than that with 1. See supporting information.
Experimental Section
Electrochemical analysis of the complexes
Cyclic voltammetry of complexes (1-10) was carried out by three
electrode configuration. Working electrode: Pt disk (1 mm diameter);
counter electrode: a Pt wire; reference electrode: saturated calomel
electrode, SCE. Sample was prepared in dry deoxygenated acetonitrile.
A. 0.1 M solution of [NBu4]PF6 in acetonitrile was used as supporting
electrolyte. Ferrocene (E1/2, Fc/Fc+ = 0.44 volts vs. SCE) was used as an
external calibration standard.
[12] L. P. Woters, R. Koekkoek, F. M. Bickelhaupt, ACS Catal., 2015, 5,
5766−5775.
[13] a) S. Ogo, T. Abura, Y. Watanabe, Organometallics, 2002, 21, 2964-
2969; b) H-Y. T. Chen, C. Wang, X. Wu, X. Jiang, C. R. A. Catlow, J.
Xiao, Chem. Eur. J., 2015, 21, 16564 – 16577; c) S. M. Ng, C. Yin, C. H.
Yeung, T. C. Chan, C. P. Lau, Eur. J. Inorg. Chem., 2004, 1788 – 1793;
d) S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev., 2004,
248, 2201–2237; e) O. Eisenstein, R. H. Crabtree, New J. Chem., 2013,
37, 21-27.
General procedure for transfer hydrogenation of ketone
Acetophenone (1 mmol, 120.2 mg), catalyst (0.01 mmol), potassium
hydroxide (0.2 mmol, 11.2 mg), and 2-propanol (5 mL) were added in a
flask and stirred at 100°C. Aliquots were withdrawn at different time
intervals to calculate the conversion by 1H NMR spectroscopic analysis in
CDCl3. The conversions were based on the average of three runs. The
characteristic doublet peak from the product 1-phenylethanol at 1.5 ppm
and the characteristic singlet peak from acetophenone at 2.6 ppm were
integrated to determine the yield.
[14] M. V. Jiménez, J. Fernández-Tornos, J. J. Pérez-Torrente, F. J.
Modrego, P. Garcıá-Orduña, L. A. Oro, Organometallics, 2015, 34, 926-
940..
[15] J. Campos, U. Hintermair, T. P. Brewster,M. K. Takase, R. H. Crabtree,
ACS Catal., 2014, 4, 973-985.
[16] a) Y. Huang, V. H. Rawal, J. Am. Chem. Soc., 2002, 124, 9662–9663;
b) I. Scodeller, A. Salvini, G. Manca, A. Ienco, L. Luconi, W.
Oberhauser, Inorg. Chim. Acta, 2015, 431, 242–247.
[17] C. M. Moore, B. Bark, N. K. Szymczak, ACS Catal., 2016, 6,
1981−1990.
Acknowledgements
[18] For similar molecular orbital approach to evaluate hydride donor ability
(hydricity) of [HM(diphosphine)2]+ (M= Ni, Pd, Pt) complexes, see: a) M.
R. Nimlos, C. H. Chang, C. J. Curtis, A. Miedaner, H. M. Pilath, D. L.
DuBois, Organometallics, 2008, 27, 2715–2722; b) J. W. Raebiger, A.
Miedaner, C. J. Curtis, S. M. Miller, O. P. Anderson, D. L. DuBois, J.
Am. Chem. Soc., 2004, 126, 5502-5514.
Generous financial assistance from IISER Bhopal, doctoral
fellowships from the UGC (to S.S. and R.T.) and BS-MS
INSPIRE fellowship from the DST (to I.M.) are gratefully
acknowledged.
[19] For molecular orbital diagram of similar 16-electron, five-coordinate
[Cp*Ru(NN)]+ (LL = NN or PP donor) fragments, see: C. Gemel, V. N.
Sapunov, K. Mereiter, M. Ferencic, R. Schmid, K. Kirchner, Inorg. Chim.
Acta, 1999, 286, 114–120.
Keywords: Hydride transfer, iridium, N-heterocyclic carbene,
hydricity, yaw angle, bite angle, steric.
[1]
For reviews, see: a) N. Fey, A. G. Orpen, J. N. Harvey, Coord. Chem.
Rev., 2009, 253, 704–722; b) D. J. M. Snelders, G. van Koten, R. J. M.
K. Gebbink, Chem. Eur. J., 2011, 17, 42–57; c) M. Salamone, M. Bietti,
Acc. Chem. Res., 2015, 48, 2895−2903; d) L. R. Sita, Angew. Chem.
Int. Ed., 2011, 50, 6963–6965; Angew. Chem., 2011, 123, 7097-7099;
This article is protected by copyright. All rights reserved.