P. M. Habib et al. / Tetrahedron Letters 49 (2008) 7005–7007
7007
Melloni, A.; Umani-Ronchi, A. Synthesis 2002, 1110; (d) Komoto, I.; Kobayashi,
S. J. Org. Chem. 2004, 69, 680; (e) Zhan, Z.-P.; Yang, R.-F.; Lang, K. Tetrahedron
Lett. 2005, 46, 3859; (f) Bartoli, G.; Bosco, M.; Giuli, S.; Giuliani, A.; Lucarelli, L.;
Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2005, 70, 1941; (g) Lin, C.;
Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.; Liu, J.-T.; Yao, C.-F. Tetrahedron 2005,
61, 11751; (h) Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F. Chem. Commun. 2005,
789; (i) Azizi, N.; Arynasab, F.; Saidi, M. R. Org. Biomol. Chem. 2006, 4275; (j)
Ballini, R.; Clemente, R. R.; Palmieri, A.; Petrini, M. Adv. Synth. Catal. 2006, 348,
191; (k) An, L.-T.; Zou, J.-P.; Zhang, L. L.; Zhang, Y. Tetrahedron Lett. 2007, 48,
4297; (l) Wu, P.; Wan, Y.; Cai, J. Synlett 2008, 1193.
O2N
NO2
R
R
NH
HN
11
O2N
Water
100 o
+
C
NO2
R
R
H
CH3
Time(h)
Yield %
70
N
11a
11b
7
12
R = H, CH3
H
60
7. (a) Jia, Y.-X.; Zhu, S.-F.; Yang, Y.; Zhou, Q.-L. J. Org. Chem. 2006, 71, 75; (b)
Bandini, M.; Garelli, A.; Rovinetti, M.; Tommasi, S.; Umani-Ronchi, A. Chirality
2005, 17, 522; (c) Zhan, Z.-P.; Lang, K. Synlett 2005, 1551; (d) Dessolé, G.;
Herrera, R. P.; Ricci, A. Synlett 2004, 2374; (e) Herrera, R. P.; Sgarzani, V.;
Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576; (f) Zhuang, W.;
Hazell, R. G.; Jorgensen, K. A. Org. Biomol. Chem. 2005, 2566.
Scheme 1. Reaction of 1,4-bis-(2-nitrovinyl)benzene with various indoles.
HN
8. Kusurkar, R. S.; Alkobati, N. A.; Gokule, A. S.; Chaudhari, P. M.; Waghchaure, P.
B. Synth. Commun. 2006, 36, 1075.
9. (a) Kavala, V.; Samal, A. K.; Patel, B. K. Arkivoc 2005, i, 20; (b) Nagai, Y.;
Matubayasi, N.; Nakahara, M. Bull. Chem. Soc. Jpn. 2004, 77, 691 references cited
therein.
10. (a) Maggi, R.; Bigi, F.; Carloni, S.; Mazzacani, A.; Sartori, G. Green Chem. 2001,
173; (b) Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649; (c) Chankeshwara, S. V.;
Chakraborti, A. K. Org. Lett. 2006, 8, 3259; (d) Khatik, G. L.; Kumar, R.;
Chakraborti, A. K. Org. Lett. 2006, 8, 2433.
25 mL
100 oC
NO2
NO2
+
N
H
30 mmol
36 mmol
87 %
Scheme 2. Large-scale reaction of b-nitrostyrenes with indole.
11. (a) McNulty, J.; Mo, R. Chem. Commun. 1998, 933; (b) Weller, T.; Seebach, D.
Tetrahedron Lett. 1982, 23, 935.
present reaction conditions, various indoles reacted with 1,4-bis-
(2-nitrovinyl)benzene to give moderate yields of bis-indolyl
adducts (Scheme 1).
In order to extend the scope of the methodology, we carried out
the reaction in large scale by taking 30 mmol of nitrostyrene and
36 mmol of indole in 25 ml water at 100 °C. The reaction pro-
ceeded without any difficulty to obtain high yield of product
(Scheme 2).
12. Typical experimental procedure:
A mixture of indole (1.2 mmol) and
b-nitrostyrene (1 mmol) was suspended in 2 mL of water, and the reaction
mixturewas heatedat 100 °C. Theprogress ofthe reactionwas monitored byTLC.
After completion of the reaction, the reaction mixture was extracted with ethyl
acetate (2 Â 10 mL). The organic layer was separated, dried over anhydrous
sodium sulfate, and concentrated to obtain crude product. Further purification
was achieved by column chromatography using EA/hexane as eluent.
13. Spectral data: 1a,6f,6g,6i,6k 3a,6e,6g,6i 4a,6g 6a,6g,8 9a,6g,6k,8 10a,6g,8 1b,6g,6i
,
1c,6g,6i,6k 1e,6f,6i 1f,6k and 11a6k are known compounds. 2-(1-(1H-Indol-3-yl)-
2-nitroethyl) phenol (2a): colorless solid, mp 72–74 °C. 1H NMR (CDCl3,
400 MHz): d 8.10 (br s, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H),
7.18–7.06 (m, 5H), 6.84 (t, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 5.48 (t,
J = 7.8 Hz, 1H), 5.34 (br s, 1H), 5.12–5.00 (m, 2H). 13C NMR (CDCl3, 100 MHz): d
154.3, 136.6, 129.3, 128.7, 126.6, 125.7, 122.6, 122.3, 120.6, 119.8, 119.2, 116.2,
113.8, 111.5, 78.2, 36.3. Ms (m/z) (relative intensity) 282(M+, 30), 235(12),
234(18), 220(100), 204(12), 165(12), 143(12), 130(12), 117(24), 91(12),
77.1(10). HRMS: calcd for C16H14N2O3: calcd 282.0999 found 282.1000. 3-(2-
Nitro-1-p-tolylethyl)-1H-indole (5a): viscous liquid 1H NMR (CDCl3, 400 MHz): d
8.06 (br s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.16–7.25 (m,
3H), 7.11 (d, J = 8.0 Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 1.8 Hz,1H), 5.14
(t, J = 8.0 Hz, 1H), 5.01–5.07 (m, 1H), 4.88–4.93 (m, 1H), 2.3 (s, 3H). 13C NMR
(CDCl3, 100 MHz): d 137.4, 136.7, 136.4, 129.8, 127.8, 126.3, 122.8, 121.7,
120.1, 119.2, 114.8, 111.5, 79.8, 41.4, 21.2. MS m/z (relative intensity) 280(M+,
63), 233(100), 235(12), 220(80), 218(48), 204(15), 132(18), 115(20), 108(24),
89(9). HRMS: calcd for C17H16N2O2: calcd 280.1206 found 280.1210. 3-(1-(4-
Nitrophenyl)-2-nitroethyl)-1H-indole (7a): colorless solid; mp 145–147 °C. 1H
NMR (CDCl3, 400 MHz): d 8.22 (br s, 1H), 8.18 (d, J = 8.8 Hz, 2H), 7.52 (d,
J = 8.4 Hz, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.22 (t, J = 8.0 Hz, 1H), 7.09 (t, J = 7.6 Hz,
1H), 7.05 (s, 1H), 5.30 (t, J = 8.0 Hz, 1H), 5.08–5.13 (m, 1H), 4.95–5.02 (m, 1H).
13C NMR (CDCl3, 100 MHz): d 147.6, 146.9, 136.7, 128.9, 125.8, 124.4, 123.3,
121.8, 120.5, 118.7, 113.2, 111.8, 78.9, 41.4. MS m/z (relative intensity):
311(M+, 44), 264(100), 218(28), 204(16), 143(4), 108(12). HRMS: calcd for
C16H13N3O4: calcd 311.0901 found 311.0896. 3-(1-(Naphthalen-2-yl)-2-
nitroethyl)-1H-indole (8a): colorless solid; mp 140–142 °C. 1H NMR (CDCl3,
400 MHz): d 8.27 (d, J = 8.4 Hz, 1H), 8.04 (br s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.78
(t, J = 4.8 Hz, 1H), 7.57–7.50 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.38–7.33 (m, 3H),
7.19 (t, J = 8.0 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 6.07 (t,
J = 7.8 Hz, 1H), 5.06–5.11 (m, 2H). 13C NMR (CDCl3, 100 MHz): d 136.6, 134.6,
134.2, 131.1, 129.2, 128.3, 126.8, 126.1, 125.9, 125.3, 124.6, 122.7, 122.6, 122.5,
120.0, 118.8, 114.3, 111.4, 78.5, 36.9. MS m/z (relative intensity): 316(M+,40),
269(76), 268(100), 254(57), 241(18), 226(9), 153.1(78), 115(28), 89.(9). HRMS:
calcd for C20H16N2O2: calcd 316.1206 found 316.1213. 3-(2-Nitro-1-
phenylethyl)-2-phenyl-1H-indole (1d): colorless solid; mp 143–145 °C. 1H
NMR (CDCl3, 400 MHz): d 8.14 (br s, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.43 (br s,
5H), 7.38–7.26 (m, 5H), 7.28–7.17 (m, 2H), 7.1 (t, J = 7.4 Hz, 1H), 5.31 (t,
J = 8.0 Hz, 1H), 5.09–5.20 (m, 2H). 13C NMR (CDCl3, 100 MHz): d 140.1, 137.1,
136.3, 132.4, 129.1, 129.0, 128.9, 128.8, 127.7, 127.4, 122.7, 120.5, 120.1, 111.6,
109.8, 79.3, 40.9. MS m/z (relative intensity): 342(M+, 96), 296(18), 294(90),
282(50), 280(18), 218(60), 207(100), 165 (16), 139(14), 103(12), 77(18).
HRMS: calcd for C22H18N2O2: calcd 342.1363 found 342.1366. 1,4-Bis(1-(2-
methyl-1H-indol-3-yl)-2-nitroethyl) benzene (11b): colorless solid mp 238–
240 °C. 1H NMR (DMSO-d6, 400 MHz): d 10.9 (br s, 2H), 7.44 (d, J = 8.0 Hz, 2H),
7.30 (s, 4H), 7.22 (d, J = 8. Hz, 2H), 6.95 (t, J = 7.6 Hz, 2H), 6.84 (t, J = 7.6 Hz 2H),
5.47–5.42 (m, 2H) 5.25–5.31 (m, 2H), 4.97–5.10 (m, 2H), 2.39 (s, 6H). 13C NMR
(DMSO-d6, 100 MHz): d 138.9, 135.5, 133.2, 127.6, 126.5, 120.3, 118.7, 118.5,
110.9, 108.2, 78.2, 11.7. MS m/z (relative intensity): 482(M+, 12), 422(9),
374(16), 216(6), 187(6), 143(100), 129(30). HRMS: calcd for C28H26N4O4: calcd
482.1954. found 482.1949.
In conclusion, we have achieved an un-catalyzed Friedel–Craft’s
alkylation of indole with b-nitrostyrenes in water. The procedure is
entirely green, and applied for structurally diverse indoles as well
as for b-nitrostyrenes to obtained good yields. Simple reaction con-
ditions, easy isolation of the products, use of green solvent and via-
bility for the large-scale preparation are the advantages of the
present method over the reported procedures. Hence, this method
is not only representing green alternatives to the literature proce-
dures but also would find practical use in the construction of
3-substituted indole derivatives.
Acknowledgments
Financial support of this work by the National Science Council
of the Republic of China and National Taiwan Normal University
(TOP001) is gratefully acknowledged.
References and notes
1. (a) Breslow, R . Acc. Chem. Res. 1991, 24, 159; (b) Li, C. J.; Chang, T. H. Organic
Reactions in Aqueous Media; Wiley: New York, 1997; p 7950; (c) Lindström, U.
M. Chem. Rev. 2002, 102, 2751; (d) Shu, K.; Kei, M. Acc. Chem. Res. 2002, 35, 209;
(e) Li, C.-J. Chem. Rev. 2005, 105, 3095; (f) Narayan, S.; Muldoon, J.; Finn, M. G.;
Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275; (g)
Pirrung, M. C. Chem. Eur. J. 2006, 12, 1312; (h) Polshettiwar, V.; Varma, R. S. Acc.
Chem. Res. 2008, 41, 629.
2. (a) Sundberg, R. J. In The Chemistry of Indoles; Academic: New York, 1996; p
113; (b) Livingstone, R. In Rodd’s Chemistry of Carbon Compounds; Ansell, M. F.,
Ed.; Elsevier: Oxford, 1984, Vol. 4.
3. (a) Moore, R. E.; Cheuk, C.; Yang, X.-Q.; Patterson, G. M. L.; Bonjouklian, R.;
Smitka, T. A.; Mynderse, J.; Foster, R. S.; Jones, N. D.; Swartzendruber, J. K.;
Deeter, J. B. J. Org. Chem. 1987, 52, 1036; (b) Moore, R. E.; Cheuk, C.; Patterson,
G. M. L. J. Am. Chem. Soc. 1984, 106, 6456; (c) Sakagami, M.; Muratke, H.;
Natsume, M. Chem. Pharm. Bull. 1994, 42, 1393; (d) Fukuyama, T.; Chen, X. J. Am.
Chem. Soc. 1994, 116, 3125.
4. (a) Wang, S.-Y.; Ji, S.-J.; Loh, T.-P. Synlett 2003, 2377; (b) Ji, S.-J.; Wang, S.-Y.
Synlett 2003, 2074–2076; (c) Perekalin, V. V.; Lipina, E. S.; Berestovitskaya, V.
M.; Efremov, D. A. Nitroalkenes; Wiley & Sons, Ltd: Chichester, 1994.
5. Olah, G. A.; Krishnamurty, R.; Prakash, G. K. S. Friedel–Crafts Alkylation. In
Comprehensive Organic Synthesis, 1st ed.; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. III, p 293.
6. (a) Harrington, P. E.; Kerr, M. A. Synlett 1996, 1047; (b) Yadav, J. S.; Abraham, S.;
Reddy, B. V. S.; Sabitha, G. Synthesis 2001, 2165; (c) Bandini, M.; Melchiorre, P.;