7232
H. Nakamura et al. / Tetrahedron Letters 49 (2008) 7230–7233
Table 2
microwave irradiation. We believe that the current finding is sig-
nificantly important in aspects of widely applicable methodology
and reduction of energy consumption for organic synthesis.
Synthesis of allenes
2
from various terminal alkynes
1
under the microwave
condition18
CuBr (0.3 eq)
R
R
+ (CH2O)n + HNCy2
dioxane, 150 oC
microwave
Acknowledgment
1
2
This work was supported by a Grant-in-Aid for Scientific Re-
search on Priority Areas ‘Advanced Molecular Transformations of
Carbon Resources’ from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
Entry
1
1
Time (min)
Yielda (%)
86
O
1a
1b
1c
5
5
5
O
2
3
77
62
References and notes
O
1. Strauss, C. R.; Trainor, R. W. Aust. J. Chem. 1995, 48, 1665–1692.
2. Larhed, M. Acc. Chem. Res. 2002, 35, 717–727.
3. (a) Strauss, C. R. Aust. J. Chem. 1999, 52, 83–96; (b) Strauss, C. R. In Handbook of
Green Chemistry and Technology; Clark, J., Duncan, M., Eds.; Blackwell Science:
Oxford, 2002; pp 397–415; (c) Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem.
Res. 2002, 35, 717–727.
4. Olofsson, K.; Nilsson, P. In Microwaves in Organic Synthesis, 2nd ed.; Tierney, J.
P., Lidstrom, P., Eds.; CRC Press: Oxford, 2004; pp 685–725.
5. (a) Modern Allene Chemistry; Krause, N., Hashmi, S., Eds.; Wiley-VCH:
Weinheim, 2004; (b) Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed.
2002, 41, 2933 and references cited therein.
6. (a) Yamamoto, Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 6019; (b)
Trost, B. M.; Gerusz, V. J. J. Am. Chem. Soc. 1995, 117, 5156; (c) Franzén, J.;
Löfstedt, J.; Dorange, I.; Bäckvall, J. E. J. Am. Chem. Soc. 2002, 124, 11246; (d)
Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995, 117, 1843; (e)
Ahmed, M.; Amauld, T. M.; Barrett, A. G.; Braddock, D. C.; Flack, K.; Procopiou, P.
A. Org. Lett. 2000, 2, 551; (f) Takagi, K.; Tomita, I.; Endo, T. Macromolecules 1997,
30, 7386; (g) Dauvergne, J.; Burger, A.; Biellmann, J. F. Nucleosides Nucleotides
Nucl. 2001, 20, 1775; (h) Nakamura, H.; Onagi, S. Tetrahedron Lett. 2006, 47,
2539; (i) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C.; Torres, M.
R. Chem. Eur. J. 2006, 12, 1539; (j) Alcaide, B.; Almendros, P.; Rodriguez-Acebes,
R. Chem. Eur. J. 2005, 11, 5708.
O
4
5
6
1d
1e
1f
5
61
37
74
N
O
10
10
Bn2N
OH
H3C OH
7
1g
10
91
7. (a) Ma, S.; He, Q. Angew. Chem., Int. Ed. 2004, 43, 988; (b) Ma, S.; Zhang, A. J. Org.
Chem. 1998, 63, 9601; (c) Zimmermann, M.; Wibbeling, B.; Hoppe, D. Synthesis
2004, 765.
OH
8
1h
1i
10
20
95
76
8. (a) Tsuji, J.; Sugiura, T.; Yuhara, M.; Minami, I. Chem. Commun. 1986, 922; (b)
Tsuji, J.; Sugiura, T.; Minami, I. Synthesis 1987, 603; (c) Tabuchi, T.; Inanaga, J.;
Yamaguchi, M. Tetrahedron Lett. 1986, 27, 5237; (d) Badone, D.; Cardamone, R.;
Guzzi, U. Tetrahedron Lett. 1994, 35, 5477; (e) Huang, C. W.;
Shanmugasundaram, M.; Chang, H. M.; Cheng, C. H. Tetrahedron 2003, 59,
3635; (f) Lee, K.; Seomon, D.; Lee, P. H. Angew. Chem., Int. Ed. 2002, 41, 3901; (g)
Lee, P. H.; Kim, H.; Lee, K. Adv. Synth. Catal. 2005, 347, 1219–1222.
9. (a) Rona, P.; Crabbé, P. J. Am. Chem. Soc. 1968, 90, 4733; (b) Rona, P.; Crabbé, P. J.
Am. Chem. Soc. 1969, 91, 3289; (c) Moreau, J.-L.; Gaudemar, M. J. J. Organomet.
Chem. 1976, 108, 159.
OH
9b
OAc
10
1j
10
65
10. (a) Searles, S.; Li, Y.; Nassim, B.; Robert Lopes, M. T.; Tran, P. T.; Crabbé, P. J.
Chem. Soc. Perkin Trans. I 1984, 747; (b) Crabbé, P.; Fillion, H.; André, D.; Luche,
J.-L. Chem. Commun. 1979, 859.
11. Recent examples of copper-catalyzed reactions accelerated by microwave: (a)
Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004, 6, 1001; (b)
Singh, B. K.; Appukkuttan, P.; Claerhout, S.; Parmar, V. S.; Van der Eycken, E.
Org. Lett. 2006, 8, 1863.
12. (a) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J. F. J. Am. Chem. Soc.
2004, 126, 5958; (b) Nakamura, H.; Kamakura, T.; Onagi, S. Org. Lett. 2006, 8,
2095; (c) Nakamura, H.; Ishikura, M.; Sugiishi, T.; Kamakura, T.; Biellmann, J. F.
Org. Biomol. Chem. 2008, 6, 1471.
11
12
1k
1l
10
10
62
60
7
H3CO
F
13. Nakamura, H.; Tashiro, S.; Kamakura, T. Tetrahedron Lett. 2005, 46, 8333.
14. (a) Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed.
2003, 42, 5763; (b) Gommermann, N.; Knochel, P. Chem. Eur. J. 2006, 12, 4380;
(c) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584.
15. (a) Glaser, C. Liebigs Ann. Chem. 1870, 154, 137; (b) Eglinton, G.; McCrae, W. J.
Chem. Soc. 1963, 2295.
16. Baret, P.; Barreiro, E.; Greene, A. E.; Luché, J.-L.; Teixeira, M.-A.; Crabbé, P.
Tetrahedron 1979, 35, 2931.
17. Nakamura, H.; Onagi, S. Tetrahedron Lett. 2006, 47, 2539.
HN
Cl
13
1m
5
63
52
O
OH
CH3
H
18. A representative procedure for the microwave-assisted allene formation from
terminal alkynes is as follows: To a mixture of alkyne 1a (73.3 mg, 0.50 mmol)
and CuBr (22 mg, 30 mol %) in dioxane (2.0 mL) were added paraformaldehyde
(37.5 mg, 1.25 mmol) and N,N-dicyclohexylamine (0.20 mL, 1.0 mmol) in a
sealed vial tube. The mixture was heated to 150 °C with stir using the
14
1n
10
H
H
HO
TM
microwave apparatus (Initiator , Biotage, Co. Ltd). When the reaction
a
Isolated yield based on 1a.
The reaction was carried out using 0.5 equiv of CuBr.
temperature was set at 150 °C on the apparatus, it took 3 min to reach this
temperature with 380 W of microwave power, and then reaction temperature
was maintained at 150 °C for 10 min with 75 W of microwave irradiation.
During the reaction course, the pressure in the sealed vial was less than 2 bar.
The mixture was filtered with a short column chromatography on silica gel
eluted with ether and concentrated. The residue was purified by column
chromatography on silica gel to give 2a in 86% yield (69.0 mg, 0.43 mmol) as a
b
In conclusion, we found that CuBr-catalyzed homologation of
alk-1-ynes to terminal allenes was dramatically accelerated by