molecular electronics, opto-electronics, chemical sensing and
analysis, and photovoltaics because of their excellent photo-
physical properties.3 There are two general methods that have
been reported for the construction of teraryls. One is the
transition metal-catalyzed aryl-aryl coupling reactions of the
dihalobenzene derivatives with aryl nucleophiles (arylboronic
acids, arylmagnesium bromides, and arylstannyl halides etc.).4
The other is from diaryl-substituted open chain precursors to
build up the central phenyl ring, for example, via transition
metal-catalyzed [2 + 2 + 2] and [4 + 2] cycloadditions, which
has been extensively reviewed.5 For the former, the process is
primarily limited by the availability of the organometallic
coupling partners, and the incompatibility of the organometallic
partners with some certain electrophilic functional groups (e.g.,
carbonyls, enones).6 Although the latter approach is a common
and valuable protocol to polysubstituted benzene and teraryl
derivatives, the reaction often meets the problem of chemo- and
regioselectivity. Therefore, to match the increasing scientific
and practical demands, it is still of great importance to develop
simple and efficient approaches for the construction of teraryls,
especially those with flexible substitution patterns.
A New Route to Multifunctionalized p-Terphenyls
and Heteroaryl Analogues via [5C + 1C(N)]
Annulation Strategy
Lei Zhang, Fushun Liang,* Xin Cheng, and Qun Liu*
Department of Chemistry, Northeast Normal UniVersity,
Changchun 130024, China
ReceiVed October 12, 2008
On the other hand, the utility of R-oxo ketene-(S,S)-acetals
as versatile intermediates in organic synthesis has been recog-
nized.7 In our research on the chemistry of functionalized ketene-
(S,S)-acetals,8 easily available and structurally flexible R-alk-
enoyl ketene-(S,S)-acetals have been demonstrated as versatile
building blocks for the efficient construction of a wide variety
of six-membered carbo- and heterocycles including cyclohex-
enones (or phenols), 4-pyridones, and thiopyranones, on the
basis of [5C + 1C],9a [5C + 1N],9b,c and [5C + 1S]9d annulation
p-Terphenyls and heteroaryl analogues including bipyridines
were prepared via [5C + 1C(N)] annulation of R-aryl-R-
alkenoyl ketene-(S,S)-acetals (five carbon 1,5-bielectrophilic
species) with nitroethane or ammonium acetate. The reaction
features mild conditions, multisubstitution, and functional
group tolerance and is metal catalyst free. The present
protocol provides a new alternative to the conventional
methodologies for the synthesis of teraryls.
(3) (a) Mu¨llen, K.; Wegner, G. Electronic Materials: The Oligomer Approach;
Wiley-VCH: Weinhein, Germany, 1998. (b) Chen, B.; Baumeister, U.; Pelzl,
G.; Das, M. K.; Zeng, X.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005,
127, 16578–16591. (c) Udayakumar, B. S.; Schuster, G. B. J. Org. Chem. 1992,
57, 348–352. (d) Kiryanov, A. A.; Sampson, P.; Seed, A. J. J. Mater. Chem.
2001, 11, 3068–3077. (e) Karastatiris, P.; Mikroyannidis, J. A.; Spiliopoulos,
I. K.; Fakis, M.; Persephonis, P. J. Polym. Sci. Part A: Polym. Chem. 2004, 42,
2214–2224. (f) Ogawa, H.; Ohnishi, K.; Shirota, Y. Synth. Met. 1997, 91, 243–
245. (g) Bordat, P.; Brown, R. Chem. Phys. Lett. 2000, 331, 439–445. (h) Fabian,
W. M. F.; Kauffman, J. M. J. Lumin. 1999, 85, 137–148. (i) Wright, R. S.;
Vinod, T. K. Tetrahedron Lett. 2003, 44, 7129–7132.
(4) For a review, see: (a) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.;
Lemaire, M. Chem. ReV. 2002, 102, 1359–1469. Selected examples on the
synthesis of symmetric and unsymmetric terphenyls, see: (b) Cho, C. H.; Kim,
I. S.; Park, K. Tetrahedron 2004, 60, 4589–4599. (c) Miguez, J. M. A.; Sousa-
Pedrares, L. A. A.; Vila, J. M.; Hii, K. K. J. Org. Chem. 2007, 72, 7771–7774.
(d) Todd, M. H.; Balasubramanian, S.; Abell, C. Tetrahedron Lett. 1997, 38,
6781–6784. (e) Corsico, E. F.; Rossi, R. A. Synlett 2000, 230–232. (f) Rottla¨nder,
M.; Knochel, P. J. Org. Chem. 1998, 63, 203–208. (g) Shimizu, H.; Manabe, K.
Tetrahedron Lett. 2006, 47, 5927–5931. (h) Child, A. D.; Reynolds, J. R.
Macromolecules 1994, 27, 1975–1977. (i) Goel, A.; Verma, D.; Singh, F. V.
Tetrahedron Lett. 2005, 46, 8487–8491. (j) Yamamoto, Y.; Nunokawa, K.; Ohno,
M.; Eguchi, S. Synthesis 1996, 8, 949–953. (k) Taylor, R. H.; Felpin, F.-X. Org.
Lett. 2007, 9, 2911–2914.
(5) Recent reviews on [2 + 2 + 2] and [4 + 2] cycloadditions, see: (a)
Saito, S.; Yamamoto, Y. Chem. ReV. 2000, 100, 2901–2915. (b) Kotha, S.;
Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 474, 1–4767. (c)
Yamamoto, Y. Curr. Org. Chem. 2005, 9, 503–519. (d) Chopadea, P. R.; Louiea,
J. AdV. Synth. Catal. 2006, 348, 2307–2327. (e) Gandon, V.; Aubert, C.; Malacria,
M. Chem. Commun. 2006, 220, 9–2217. Selected papers on [2 + 2+2]
cycloaddition, see: (f) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am.
Chem. Soc. 2004, 126, 8382–8383. (g) Tsuji, H.; Yamagata, K.; Fujimoto, T.;
Nakamura, E. J. Am. Chem. Soc. 2008, 130, 7792–7793. (h) McDonald, F. E.;
Smolentsev, V. Org. Lett. 2002, 4, 745–748.
p-Terphenyls have received considerable attention in the past
decades, due to their presence as a structural motif in natural
products, and their utility in biological and material sciences.1
Naturally isolated p-terphenyl derivatives including terphenyllin,
terferol, and terprenin have been reported to possess biological
activities with potential therapeutic values.2 Synthetic p-
terphenyls are often exploited in the material areas such as
(1) For a review on terphenyls, see: Liu, J.-K. Chem. ReV. 2006, 106, 2209-
2223.
(2) (a) Finkel, T.; Holbrook, N. J. Nature 2000, 408, 239. (b) Kamigauchi,
T.; Sakazaki, R.; Nagashima, K.; Kawamura, Y.; Yasuda, Y.; Matsushima, K.;
Tani, H.; Takahashi, Y.; Ishii, K.; Suzuki, R.; Koizumi, K.; Nakai, H.; Ikenishi,
Y.; Terui, Y. J. Antibiot. 1998, 51, 445. (c) Zhang, C.; Ondeyka, J. G.; Herath,
K. B.; Guan, Z.; Collado, J.; Pelaez, F.; Leavitt, P. S.; Gurnett, A.; Nare, B.;
Liberator, P.; Singh, S. B. J. Nat. Prod. 2006, 69, 710–712. (d) Roberti, M.;
Pizzirani, D.; Recanatini, M.; Simoni, D.; Grimaudo, S.; Di Cristina, A.;
Abbadessa, V.; Gebbia, N.; Tolomeo, M. J. Med. Chem. 2006, 49, 3012–3018.
(e) Simoni, D.; Giannini, G.; Roberti, M.; Rondanin, R.; Baruchello, R.; Rossi,
M.; Grisolia, G.; Invidiata, F. P.; Aiello, S.; Marino, S.; Cavallini, S.; Siniscalchi,
A.; Gebbia, N.; Crosta, L.; Grimaudo, S.; Abbadessa, V.; Di, Cristina, A.;
Tolomeo, M. J. Med. Chem. 2005, 48, 4293–4299. (f) Guo, H.; Hu, H.; Liu, S.;
Liu, X.; Zhou, Y.; Che, Y. J. Nat. Prod. 2007, 70, 1519–1521. (g) Ohkanda, J.;
Lockman, J. W.; Kothare, M. A.; Qian, Y.; Blaskovich, M. A.; Sebti, S. M.;
Hamilton, A. D. J. Med. Chem. 2002, 45, 177–188. (h) Sawayama, Y.; Tsujimoto,
T.; Sugino, K.; Nishikawa, K.; Isobe, M.; Kawagishi, H. Biosci. Biotechnol.
Biochem. 2006, 70, 2998–3003.
(6) (a) Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373–1375. (b) Frid,
M.; Pe´rez, D.; Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9469–
9470.
10.1021/jo802318p CCC: $40.75
Published on Web 11/26/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 899–902 899