C O M M U N I C A T I O N S
Scheme 2
Scheme 3
Reagents and conditions: (a) 4 (2.0 equiv), NIS, cat. TfOH, MS4A, 0
°C, 64%; (b) LiOH ·H2O, Dioxane, H2O, 80 °C; (c) Ac2O, NaHCO3, H2O
then LiOH, H2O; (d) Pd(OH)2, H2, MeOH, H2O, 53% from 26.
step procedure: (i) hydrolysis of acyl protecting groups; (ii)
acetylation of the C5 amino groups; and (iii) hydrogenolysis of
the resulting benzyl ethers to provide the fully deprotected
nonasaccharide 3 in 53% yield based on 26.
Reagents and conditions: (a) 13 (1.0 equiv), NIS, cat. TfOH, CH2Cl2,
In conclusion, we describe an efficient convergent synthesis of
the GP1c epitope 3. The reactivity of the saccharide structure was
tuned by careful selection of a protecting group to match the
requisite glycosidation and glycosylation. Various glycosyl accep-
tors and donors with different oligosialoglycans can be prepared
by use of two 5N,4O-carbonyl-protected thiosialosides. The method
described herein is amenable to the synthesis of a-, b-, and c-series
ganglioside epitopes.
MS3A, -78 °C, 90%, R only; (b) 14 (1.0 equiv), NIS, cat. TfOH, CH2Cl2,
MS3A, -78 °C, 82%, R/ꢀ ) 87:13; (c) (i) TrocCl, Py, CH2Cl2, 96%; (ii)
CSA, MeOH, rt, 92%; (d) 14 (2.0 equiv), NIS, cat. TfOH, CH2Cl2/CH3CN
) 3:2, MS3A, -78 °C, 91%, R/ꢀ ) >95:5; (e) 13 (2.0 equiv), NIS, cat.
TfOH, CH2Cl2/CH3CN ) 3:2, MS3A, -78 °C, 77%, R/ꢀ ) 54:46; (f)
thiourea, 2,6-lutidine, DMF, 60 °C, 87%; (g) Ac2O, Py, CH2Cl2, cat. DMAP,
-50 °C, 92%; (h) (i) TFA, CH2Cl2; (ii) CCl3CN, Cs2CO3, CH2Cl2, 0 °C,
93% from 21, R/ꢀ ) 68:32; (i) 9, TMSOTf, CH2Cl2, MS4A, -78 to -45
°C, 95%; (j) 14 (3.0 equiv), NIS, cat. TfOH, CH2Cl2/CH3CN ) 3:2, MS3A,
-78 °C, 72%, R/ꢀ ) >90:10; (k) thiourea, 2,6-lutidine, DMF, 60 °C, 75%;
(l) A2O, Py, cat. DMAP, CH2Cl2, -30 °C, 87%; (m) (i) TFA, CH2Cl2, (ii)
CCl3CN, Cs2CO3, CH2Cl2, 0 °C, 90% from 24, R/ꢀ ) 84:16; (n) 10,
TMSOTf, CH2Cl2, MS4A, -65 to -40 °C, 93%; (o) Zn dust, AcOH, THF,
0 °C, 94%.
Acknowledgment. This work was financially supported by JSPS
Research Fellowships for Young Scientists DC2.
Supporting Information Available: This material is available free
corresponding imidates 7 and 8. The chloroacetyl esters at the C7
and C8 positions underwent partial hydrolysis during imidate
formation with trichloroacetonitrile. Treatment of the trisialyl
galactosyl donor 8 and glucoside 10 with a catalytic amount of
TMSOTf provided the pentasaccharide 25 in 93% yield. The miner
isomer generated in the trisialylation can be removed in the
purification of acetylated product 24. Selective deprotection of the
Troc group afforded acceptor 6 in 94% yield. In addition,
preparation of the donor 4 was achieved by chemoselective
glycosidation of 7 at the secondary alcohol with 1.2 equiv of
thioglycoside 9 in the presence of a catalytic amount of TMSOTf,
providing the tetrasaccharide 4 in 95% yield.
Synthesis of the GP1c epitope 3 from 4 and 6 is illustrated in
Scheme 3. Treatment of both the pentasaccharide acceptor 6 and
2.0 equiv of the tetrasaccharide donor 4 with NIS and a catalytic
amount of TfOH at 0 °C provided the protected nonasaccharide 26
in 64% yield. In contrast, use of the corresponding 4,6-benzyliden
acetal-protected tetrasaccharide 5 resulted in a complex reaction
mixture. These results indicate that 4,6 di-O-benzyl protection on
the galactoside is important for the synthesis of the compact and
rigid branched structure from the sialyl galactoside. Deprotection
of the protected nonasaccharide 26 was achieved using a three-
References
(1) (a) Rahmann, H.; Jonas, U.; Hildebrandt, H. Trends Glycosci. Glyco-
technol. 1998, 10, 421–437. (b) Kasahara, K.; Sanai, Y. Trends Glycosci.
Glycotechnol. 2001, 13, 587–594.
(2) Miller-Podraza, H.; Månsson, J.-E.; Svennerholm, L. FEBS Lett. 1991, 288,
212–214.
(3) Schwarz, A.; Futerman, A. H. Biochim. Biophys. Acta 1996, 1286, 247–
267.
(4) (a) Ito, Y.; Numata, M.; Sugimoto, M.; Ogawa, T. J. Am. Chem. Soc. 1989,
111, 8508–8510. (b) Ito, Y.; Nunomura, S.; Shibayama, S.; Ogawa, T. J.
Org. Chem. 1992, 57, 1821–1831. (c) Kondo, T.; Tomoo, T.; Abe, H.; Isobe,
M.; Goto, T. Chem. Lett. 1996, 337–338. (d) Ishida, H.; Kiso, M. Trends
Glycosci. Glycotechnol. 2001, 13, 57–64. (e) Ishida, H.-K.; Ishida, H.; Kiso,
M.; Hasegawa, A. Tetrahedron: Asymmetry 1994, 5, 2493–2512. (f) Ando,
H.; Ishida, H.; Kiso, M. J. Carbohydr. Chem. 1999, 18, 603–607. (g) Ando,
H.; Koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M. Angew. Chem., Int. Ed.
2005, 44, 6759–6763. (h) Boons, G.-J.; Demchenko, A. V. Chem. ReV. 2000,
100, 4539–4565. (i) De Meo, C.; Demechenko, A. V.; Boons, G.-J. J. Org.
Chem. 2001, 66, 5490–5497. (j) Tsvetkov, Y. E.; Nifantiev, N. E. Synlett
2005, 1375–1380.
(5) (a) Schmidt, R. R.; Kinzy, W. AdV. Carbohydr. Chem. Biochem. 1994, 50,
21–123. (b) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–
235.
(6) Li, Z.; Gildersleeve, J. J. Am. Chem. Soc. 2006, 128, 11612–11619.
(7) (a) Tanaka, H.; Nishiura, Y.; Takahashi, T. J. Am. Chem. Soc. 2006, 128,
7124–7125. (b) Farris, M. D.; De Meo, C. Tetrahedron Lett. 2007, 48, 1225–
1227. (c) Crich, D.; Li, W. J. Org. Chem. 2007, 72, 2387–2391.
(8) Details were described in the Supporting Information.
JA807482T
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17245