C O M M U N I C A T I O N S
Scheme 2. Plausible Mechanism for the Formation of Gold
Complex 3
multiple bonds. Other studies related to this novel Au(I) complex,
and its chiral version, are currently ongoing in our laboratory.
Acknowledgment. We are grateful to the National Science
Foundation for financial support (CHE-0809683). M.S.M. acknowl-
edges the Kentucky Research Challenge Trust Fund for upgrade
of X-ray facilities.
Supporting Information Available: The 1H, 13C and 31P NMR
spectroscopic data of the new compounds shown in Tables 1 and eqs
1-3, and the detailed description of experimental procedures. Crystal-
lographic data for compound 3d are provided as a CIF file. This material
References
(1) (a) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. (b) Hashmi, A. S. K. Gold
Bull. 2004, 37, 51. (c) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem.,
Int. Ed. 2006, 45, 7896. (d) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180.
(e) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (f)
Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (g)
Zhang, L. M.; Sun, J. W.; Kozmin, S. A. AdV. Synth. Catal. 2006, 348,
2271. (h) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. (i)
Christian, B. Angew. Chem., Int. Ed. 2005, 44, 2328. (j) Nevado, C.;
Echavarren, A. M. Synthesis 2005, 167. (k) Widenhoefer, R. A.; Han, X. Q.
Eur. J. Org. Chem. 2006, 4555. (l) Marion, N.; Nolan, S. P. Angew. Chem.,
Int. Ed. 2007, 46, 2750. (m) Gorin, D. J.; Toste, F. D. Nature 2007, 446,
395. (n) Li, Z.; Brouwer, C.; He, C. Chem. ReV. 2008, 108, 3239. (o) Arcadi,
A. Chem. ReV. 2008, 108, 3266. (p) Jimenez-Nunez, E.; Echavarren, A. M.
Chem. ReV. 2008, 108, 3326. (q) Gorin, D. J.; Sherry, B. D.; Toste, F. D.
Chem. ReV. 2008, 108, 3351.
1
In situ 31P and H NMR studies were performed to understand
the mechanism for the formation of complex 3. The 31P NMR
spectrum of the crude reaction mixture of 1g showed two new peaks
at δ 43.0 ppm (major) and 46.1 ppm8 (minor) in CDCl3. A large
downfield chemical shift of the ethyl group was also observed in
the 1H NMR spectrum of the mixture (shift from δ 1.32 to δ 1.60
ppm for CH3 and from δ 4.22 ppm to 4.94 ppm for CH2).9 This
downfield chemical shift could be ascribed to the formation of
1
oxonium intermediate F (Scheme 2). The H NMR spectrum of
(2) Selected recent articles on Au-catalyzed reactions of C-C multiple bonds
include: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2008, 130,
9244. (b) Cheong, P. H.-Y.; Morganelli, P.; Luzung, M. R.; Houk, K. N.;
Toste, F. D. J. Am. Chem. Soc. 2008, 130, 4517. (c) Shapiro, N. D.; Toste,
F. D. J. Am. Chem. Soc. 2007, 129, 4160. (d) Nieto-Oberhuber, C.; Perez-
Galan, P.; Herrero-Gomez, E.; Lauterbach, T.; Rodrı´guez, C.; Lopez, S.;
Bour, C.; Rosellon, A.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem.
Soc. 2008, 130, 269. (e) Lopez, S.; Herrero-Gomez, E.; Perez-Galan, P.;
Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45,
6029. (f) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem.
Soc. 2005, 127, 6178. (g) Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc.
2008, 130, 3740. (h) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem.
Soc. 2008, 130, 1814. (i) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc.
2008, 130, 6944. (j) Xia, Y.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. J. Am.
Chem. Soc. 2008, 130, 6940. (k) Barluenga, J.; Fernandez-Rodriguez, M. A.;
Garcia-Garcia, P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764. (l) Zhang,
Z.; Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2007, 129, 14148.
(3) (a) Xu, B.; Hammond, G. B. Angew. Chem., Int. Ed. 2008, 47, 689. (b)
Liu, L.-P.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3887. (c) Wang,
W.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3713.
the reaction mixture, taken 12 h later, showed additional proton
signals corresponding to ethanol.10 Based on these findings, we
propose the reaction mechanism shown in Scheme 2. The double
bond of the allenoate is activated by coordination to cationic gold
to form intermediate E, which then undergoes an intramolecular
cyclization5f to give intermediate F (observed signal at δ 43.0 in
31P NMR spectrum). Complex 3 was obtained after workup, and
the ethyl group was hydrolyzed to ethanol.
To demonstrate that 3 is the actual intermediate in Au(I)-
catalyzed cyclizations, we performed two controlled reactions (eqs
2 and 3). In one experiment, γ-lactone 4a was obtained in 66%
yield when gold complex 3a was treated with TsOH in toluene at
80 °C (eq 2). In another experiment, 3a was treated with iodine in
(4) (a) Kang, J.-E.; Lee, E.-S.; Park, S.-I.; Shin, S. Tetrahedron Lett. 2005,
46, 7431. For a review of metal-catalyzed allenoate cyclizations, see: Ma,
S. Acc. Chem. Res. 2003, 36, 701.
(5) For selected examples, see: (a) Morita, N.; Krause, N. Org. Lett. 2004, 6,
4121. (b) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485. (c) Zhang, Z.;
Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283. (d) Buzas, A. K.;
Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 985. (e) Sromek, A. W.;
Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500. (f) Piera,
J.; Krumlinde, P.; Strubing, D.; Backvall, J.-E. Org. Lett. 2007, 9, 2235.
(6) No reaction occurred without the presence of the silver salt. Other silver
salts such as AgSbF6, AgBF4, and AgClO4 also promoted the reaction; in
all cases, the product 3a was obtained in very good yields. Moreover, this
reaction also proceeded smoothly in 1,2-dichloroethane (DCE), toluene,
tetrahydrofuran (THF), and diethyl ether. Conversely, poor yields were
obtained using acetonitrile as solvent (see Supporting Information).
(7) X-ray crystal structures of stable gold intermediates are rare. Notable
examples include: (a) Shapiro, N. D.; Toste, F. D. Proc. Natl. Acad. Sci.
U.S.A. 2008, 105, 2779. (b) Akana, J. A.; Bhattacharyya, K. X.; Muller,
P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 7736.
dichloromethane at room temperature to produce the γ-iodolactone
5a in 72% isolated yield (eq 3).11 The results of these two controlled
(8) The species at δ 46.1 was assigned to (Ph3P)2Au+; see: Liu, Y.; Song, F.;
Guo, S. J. Am. Chem. Soc. 2006, 128, 11332.
reactions imply that gold complex 3 is indeed the common
intermediate in Au-catalyzed cyclizations.
In summary, we have found that cationic gold compounds can
react with allenoates to form a series of room temperature stable
organogold(I) complexes and that these complexes are likely
intermediates in the Au-catalyzed reaction of carbon-carbon
(9) (a) Bourke, D. G.; Collins, D. J. Tetrahedron 1997, 53, 3863. (b) Peterson,
P. E.; Clifford, P. R.; Slama, F. J. J. Am. Chem. Soc. 1970, 90, 2840.
(10) The chemical shift was compared with standards from Sigma-Aldrich Co.
(11) Schuler, M.; Silva, F.; Bobbio, C.; Tessier, A.; Gouverneur, V. Angew.
Chem., Int. Ed. 2008, 47, 7927, and references cited therein.
JA806685J
9
J. AM. CHEM. SOC. VOL. 130, NO. 52, 2008 17643