Murugavel et al.
molecular magnets.6–8 Although phosphoric acid forms
extended (often framework) structures because of the pres-
ence of three acidic protons, derivatization of one or two
hydroxyl groups of the phosphoric acid by ester formation
((OR)P(O)(OH)2 and (OR)2P(O)(OH)) normally results in
the formation of metal complexes that are discrete molecules
or clusters.9 The diesters of phosphoric acid, (RO)2P(O)(OH),
are similar to carboxylic acids in some ways and, hence,
normally form either mononuclear or dinuclear metal phos-
phates more readily than larger clusters.10,11 However,
phosphate diesters do not exhibit a chelating mode of
coordination, which is very common among metal carboxy-
lates. Although bridging two adjacent metal ions is the most
preferred mode of coordination for the phosphate diesters,
there are a number of complexes where these molecules are
monodentate through the P-O- group, with dangling PdO
groups. Phosphate monoesters, on the other hand, due to the
presence of two acidic protons and one phosphoryl oxygen,
tend to embrace more metal ions around them and form
larger aggregates.9,10 Hence, the secondary building units
(SBUs) of several zeolitic structures can be modeled using
these monophosphate esters, as it has been demonstrated in
the past decade for the case of phosphonic acids.12
Among copper-containing phosphonates and phosphates,
layered copper phosphonates [Cu(RPO3)(OH2)]n have been
known for a long time.13 Discrete molecular compounds of
copper phosphonates, on the other hand, have been well-
investigated in recent years, producing a large number of
medium- to large-sized aggregates.14 In contrary, the majority
of the work carried out on copper phosphates has revolved
around the synthesis of dinuclear copper complexes with the
aim to synthesize functional models for phosphate diester
hydrolysis under physiological conditions.15-17 Much of
these studies have focused on the multidentate ligand design
to mimic the active sites of hydrolases.
Starting from di-tert-butyl phosphate (dtbpH), we have
studied copper phosphate chemistry in some detail in recent
years.10c-e It has been shown that it is possible to assemble
one-dimensional polymeric phosphate [Cu(dtbp)2]n that
(12) (a) Samanamu, C. R.; Olmstead, M. M.; Montchamp, J.-L.; Richards,
A. F. Inorg. Chem. 2008, 47, 3879. (b) Yang, Y.-F.; Ma, Y.-S.; Guo,
L.-R.; Zheng, L.-M. Cryst. Growth Des. 2008, 8, 1213. (c) Ma, Y.-
S.; Song, Y.; Li, Y.-Z.; Zheng, L.-M. Inorg. Chem. 2007, 46, 5459.
(d) Ma, Y.-S.; Wang, T.-W.; Li, Y.-Z.; Zheng, L.-M. Inorg. Chim.
Acta 2007, 360, 4117. (e) Ma, Y.-S.; Yao, H.-C.; Hua, W.-J.; Li, S.-
H.; Li, Y.-Z.; Zheng, L.-M. Inorg. Chim. Acta 2007, 360, 1645. (f)
Zhang, Z.-C.; Gao, S.; Zheng, L.-M. Dalton Trans. 2007, 4681. (g)
Florjanczyk, Z.; Lasota, A.; Wolak, A.; Zachara, J. Chem. Mater. 2006,
18, 1995. (h) Yao, H.-C.; Li, Y.-Z.; Song, Y.; Ma, Y.-S.; Zheng, L.-
M.; Xin, X.-Q. Inorg. Chem. 2006, 45, 59. (i) Cao, D.-K.; Li, Y.-Z.;
Zheng, L.-M. Inorg. Chem. 2005, 44, 2984. (j) Bauer, S.; Muller, H.;
Bein, T.; Stock, N. Inorg. Chem. 2005, 44, 9464. (k) Bishop, M.; Bott,
S. G.; Barron, A. R. Chem. Mater. 2003, 15, 3074. (l) Mason, M. R.;
Perkins, A. M.; Ponomarova, V. V.; Vij, A. Organometallics 2001,
20, 4833. (m) Chakraborty, D.; Chandrasekhar, V.; Bhattacharjee, M.;
Kra¨tzner, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg.
Chem. 2000, 39, 23.
(13) Zhang, Y.; Clearfield, A. Inorg. Chem. 1992, 31, 2821.
(14) (a) Murugavel, R.; Shanmugan, S. Dalton Trans. 2008, 5358. (b)
Chandrasekhar, V.; Nagarajan, L.; Clerac, R.; Ghosh, S.; Senapati,
T.; Verma, S. Inorg. Chem. 2008, 47, 5347. (c) Chandrasekhar, V.;
Azhakar, R.; Senapati, T.; Thilagar, P.; Ghosh, S.; Verma, S.;
Boomishankar, R.; Steiner, A.; Koegerler, P. Dalton Trans. 2008, 1150.
(d) Chandrasekhar, V.; Nagarajan, L.; Clerac, R.; Ghosh, S.; Verma,
S. Inorg. Chem. 2008, 47, 1067. (e) Baskar, V.; Shanmugam, M.;
Sanudo, E. C.; Shanmugam, M.; Collison, D.; McInnes, E. J. L.; Wei,
Q.; Winpenny, R. E. P. Chem. Commun. 2007, 37. (f) Chandrasekhar,
V.; Sasikumar, P.; Boomishankar, R.; Anantharaman, G. Inorg. Chem.
2006, 45, 3344. (g) Chandrasekhar, V.; Nagarajan, L.; Gopal, K.;
Baskar, V.; Koegerler, P. Dalton Trans. 2005, 3143. (h) Chan-
drasekhar, V.; Kingsley, S. Angew. Chem., Int. Ed. 2000, 39, 2320.
(15) (a) Glowiak, T.; Podgorska, I.; Baranowski, J. Inorg. Chim. Acta 1986,
115, 1. (b) Glowiak, T.; Podgorska, I. Inorg. Chim. Acta 1986, 125,
83. (c) Glowiak, T.; Szemik, A. W.; Wnek, I. J. Crystallogr. Spectrosc.
Res. 1986, 16, 41. (d) Glowiak, T.; Wnek, I. Acta Crystallogr. 1985,
C41, 507. (e) Glowiak, T.; Wnek, I. Acta Crystallogr. 1985, C41,
324.
(5) (a) Mehring, M.; Guerrero, G.; Dahan, F.; Mutin, P. H.; Vioux, A.
Inorg. Chem. 2000, 39, 3325. (b) Murugavel, R.; Voigt, A.; Wala-
walkar, M. G.; Roesky, H. W. Chem. ReV. 1996, 96, 2205. (c)
Prabusankar, G.; Murugavel, R.; Butcher, R. J. Organometallics 2005,
24, 2128. (d) Walawalkar, M. G.; Horchler, S.; Dietrich, S.; Chakraborty,
D.; Roesky, H. W.; Scha¨fer, M.; Schimdt, H.-G.; Sheldrick, G. M.;
Murugavel, R. Organometallics 1998, 17, 2865.
(6) (a) Mondal, K. C.; Song, Y.; Mukherjee, P. S. Inorg. Chem. 2007,
46, 9736. (b) Mondal, K. C.; Mukherjee, P. S. Inorg. Chem. 2008,
47, 4215.
(7) (a) Rossi, L. M.; Neves, A.; Bortoluzzi, A. J.; Hoerner, R.; Szpoganicz,
B.; Terenzi, H.; Mangrich, A. S.; Pereira-Maia, E.; Castellano, E. E.;
Haase, W. Inorg. Chim. Acta 2005, 358, 1807. (b) Jagoda, M.;
Warzeska, S.; Pritzkow, H.; Wadepohl, H.; Imhof, P.; Smith, J. C.;
Kraemer, R. J. Am. Chem. Soc. 2005, 127, 15061. (c) Kato, M.; Tanase,
T. Inorg. Chem. 2005, 44, 8.
(8) (a) Konar, S.; Clearfield, A. Inorg. Chem. 2008, 47, 5573. (b) Konar,
S.; Clearfield, A. Inorg. Chem. 2008, 47, 3492. (c) Konar, S.;
Clearfield, A. Inorg. Chem. 2008, 47, 3489. (d) Langley, S.; Helliwell,
M.; Sessoli, R.; Teat, S. J.; Winpenny, R. E. P. Inorg. Chem. 2008,
47, 497. (e) Khanra, S.; Kloth, M.; Mansaray, H.; Muryn, C. A.; Tuna,
F.; Sanudo, E. C.; Helliwell, M.; McInnes, E. J. L.; Winpenny, R. E. P.
Angew. Chem., Int. Ed. 2007, 46, 5568. (f) Breeze, B. A.; Shanmugam,
M.; Tuna, F.; Winpenny, R. E. P. Chem. Commun. 2007, 5185. (g)
Shanmugam, M.; Shanmugam, M.; Chastanet, G.; Sessoli, R.; Mallah,
T.; Wernsdorfer, W.; Winpenny, R. E. P. J. Mater. Chem. 2006, 16,
2576. (h) Shanmugam, M.; Chastanet, G.; Mallah, T.; Sessoli, R.; Teat,
S. J.; Timco, G. A.; Winpenny, R. E. P. Chem.sEur. J. 2006, 12,
8777. (i) Maheswaran, S.; Chastanet, G.; Teat, S. J.; Mallah, T.;
Sessoli, R.; Wernsdorfer, W.; Winpenny, R. E. P. Angew. Chem., Int.
Ed. 2005, 44, 5044.
(9) (a) Murugavel, R.; Kuppuswamy, S. Angew. Chem., Int. Ed. 2006,
45, 7022. (b) Murugavel, R.; Kuppuswamy, S.; Boomishankar, R.;
Steiner, A. Angew. Chem., Int. Ed. 2006, 45, 5536. (c) Murugavel,
R.; Kuppuswamy, S. Chem.-Eur. J. 2008, 14, 3869. (d) Murugavel,
R.; Kuppuswamy, S. Inorg. Chem. 2008, 47, 7686.
(16) (a) Mahroof-Tahir, M.; Karlin, K. D.; Chen, Q.; Zubieta, J. Inorg.
Chim. Acta 1993, 207, 135. (b) Zhu, L.; Santos, O.; Koo, C. W.;
Rybstein, M.; Pape, L.; Canary, J. W. Inorg. Chem. 2003, 42, 7912.
(c) Barker, J. E.; Liu, Y.; Martin, N. D.; Ren, T. J. Am. Chem. Soc.
2003, 125, 13332. (d) Fry, F. H.; Spiccia, L.; Jensen, P.; Moubaraki,
B.; Murray, K. S.; Tiekink, E. R. T. Inorg. Chem. 2003, 42, 5594. (e)
He, C.; Lippard, S. J. J. Am. Chem. Soc. 2000, 122, 184. (f) Koevari,
E.; Kraemer, R. J. Am. Chem. Soc. 1996, 118, 12704. (g) Wall, M.;
Hynes, R. C.; Chin, J. Angew. Chem., Int. Ed. Engl. 1993, 32, 1633.
(h) Gajda, T.; Jancso, A.; Mikkola, S.; Lo¨nnberg, H.; Sirges, H.
J. Chem. Soc., Dalton Trans. 2002, 1757. (i) Deschamps, J. R.;
Hartshorn, C. M.; Chang, E. L. Acta Crystallogr. 2002, E58, m606.
(j) Jurek, P. E.; Martell, A. E. Inorg. Chem. 1999, 38, 6003. (k) Young,
M. J.; Wahnon, D.; Hynes, R. C.; Chin, J. J. Am. Chem. Soc. 1995,
117, 9441.
(10) (a) Pothiraja, R.; Sathiyendiran, M.; Butcher, R. J.; Murugavel, R.
Inorg. Chem. 2005, 44, 6314. (b) Pothiraja, R.; Sathiyendiran, M.;
Butcher, R. J.; Murugavel, R. Inorg. Chem. 2004, 43, 7585. (c)
Murugavel, R.; Sathiyendiran, M.; Pothiraja, R.; Walawalkar, M. G.;
Mallah, T.; Riviere, E. Inorg. Chem. 2004, 43, 945. (d) Sathiyendiran,
M.; Murugavel, R. Inorg. Chem. 2002, 41, 6404. (e) Murugavel, R.;
Sathiyendiran, M.; Walawalkar, M. G. Inorg. Chem. 2001, 40, 427.
(11) (a) Lugmair, C. G.; Tilley, T. D. Monatsh. Chem. 2006, 137, 557. (b)
Fujdala, K. L.; Tilley, T. D. Chem. Mater. 2004, 16, 1035. (c) Lugmair,
C. G.; Tilley, T. D.; Rheingold, A. L. Chem. Mater. 1999, 11, 1615.
(d) Lugmair, C. G.; Tilley, T. D. Inorg. Chem. 1998, 37, 1821. (e)
Lugmair, C. G.; Tilley, T. D. Inorg. Chem. 1998, 37, 6304. (f)
Lugmair, C. G.; Tilley, T. D.; Rheingold, A. L. Chem. Mater. 1997,
9, 339.
184 Inorganic Chemistry, Vol. 48, No. 1, 2009