Since sphingosine and its derivatives are available only
in limited amounts from natural sources and because of purity
requirements for biological testing, there is a growing interest
in developing efficient methods for their synthesis.12 These
compounds have been synthesized by various routes, but
primarily from compounds of the chiral pool, particularly
amino acids (L-serine)13 and carbohydrates.14 Asymmetric
syntheses based on the use of chiral auxiliaries, such as
sulfoxides,15 chiral aziridines,16 or chiral sulfur17 and nitro-
gen18 ylides, or on catalytic procedures, such as Sharpless
asymmetric epoxidation19 and dihydroxylation reactions,16,20
the aldol reaction,21 and organocatalytic procedures, have
also been described.22
a new and efficient enantioselective method for synthesizing
sphingosine (1), phytosphingosine (2), and new 4-substituted
derivatives (3, 4) (Scheme 1) partially protected. In the
Scheme 1. Retrosynthesis
Recently, we reported efficient procedures for the glyco-
sylation of ceramides that facilitated the synthesis of GalCer23
and KRN 7000.24 New analogues of these compounds
containing structural modifications in the sphingolipid moiety
have been reported very recently.25 In this work, we describe
proposed retrosynthesis, compounds 1-4 can be obtained from
a common intermediate 5 (Scheme 1). Nucleophilic substitution
at position 4 in 5 must allow the introduction of different
substituents, affording the natural product and derivatives.
Compound 5 can be obtained by the dihydroxylation of
compound 6, which in turn can be synthesized from compound
7 by a cross-metathesis reaction. The main advantage of this
strategy is its high versatility, allowing the synthesis of not only
sphingosine and phytosphingosine but also a range of structural
analogues from a common precursor.
(7) Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. 2004, 3693–3700, and
references therein.
(8) The four stereoisomers of phytosphingosine were prepared from the
natural product. Kim, S.; Lee, N.; Lee, S.; Lee, T.; Lee, Y. M. J. Org.
Chem. 2008, 73, 1379–1385.
(9) Oldendorf, J.; Haufe, G. Eur. J. Org. Chem. 2006, 4463–4472.
(10) Van Echten-Deckert; Zschosche, A.; Ba¨r, T.; Schmidt, R. R.; Raths,
A.; Heinemann, T.; Sandhoff, K. J. Biol. Chem. 1997, 272, 15825–15833.
(11) Brodesser, S.; Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. 2003,
2021–2024.
(12) (a) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075–
1091. (b) Howell, A. R.; Ndakala, A. J. Curr. Org. Chem. 2002, 6, 365–
391.
(13) (a) Chun, J.; Lee, G.; Byun, H.-P.; Bittman, R. Tetrahedron Lett.
2002, 43, 375–377. (b) Yadav, J. S.; Geetha, V.; Raju, A. K.; Gnaneshwar,
D.; Chandrasekhar, S. Tetrahedron Lett. 2003, 44, 2983–2985. (c) Lom-
bardo, M.; Capdevila, M. G.; Pasi, F.; Trombini, C. Org. Lett. 2006, 8,
3303–3305. (d) Lee, J.-M.; Lim, H.-S.; Chung, S.-K. Tetrahedron:
Asymmetry 2002, 13, 343–347. (e) Yamamoto, T.; Hasegawa, H.; Hakogi,
T.; Katsumura, S. Org. Lett. 2006, 8, 5569–5572. (f) Masuda, Y.; Mori, K.
Eur. J. Org. Chem. 2005, 4789–4800. (g) Duffin, G. R.; Ellames, G. J.;
Hartmann, S.; Herbert, J. M.; Smith, D. I. J. Chem. Soc., Perkin Trans. 1
2000, 2237–2242. (h) Mori, K.; Masuda, Y. Tetrahedron Lett. 2003, 44,
9197–9200.
Chiral synthon 7 (NR2 ) phthalimido) was obtained by a
palladium-catalyzed dynamic kinetic asymmetric transforma-
tion (DYKAT) from the racemic butadiene monoepoxide
(8)26 (Scheme 2).
Scheme 2. Synthesis of Alkene 6
(14) (a) Luo, S.-Y.; Thopate, S. R.; Hsu, C.-Y.; Hung, S.-C. Tetrahedron
Lett. 2002, 23, 4889–4892. (b) Chaudhari, V. D.; Kumar, K. S. A.; Dhavale,
D. D. Org. Lett. 2005, 7, 5805–5807. (c) Lin, C.-C.; Fan, G.-T.; Fan, J.-M.
Tetrahedron Lett. 2003, 44, 5281–5283. (d) Chiu, H.-Y.; Tzou, D.-L. M.;
Patkar, L. N.; Lin, C.-C. J. Org. Chem. 2003, 68, 5788–5791. (e)
Plettenburg, O.; Bodmer-Narkevich, V.; Wong, C.-H. J. Org. Chem. 2002,
67, 4559–4564. (f) Graziani, A.; Passancatelli, P.; Piancatelli, G.; Tani, S.
Tetrahedron:Asymmetry 2000, 11, 3921–3937. (g) Wild, R.; Schmidt, R. R.
Tetrahedron: Asymmetry 1994, 5, 2195–2208. (h) Fan, G.-T.; Pan, Y.-S.;
Lu, K.-C.; Cheng, Y.-P.; Lin, W.-C.; Lin, S.; Lin, C.-H.; Wong, C.-H.;
Fang, J.-M.; Lin, C.-C. Tetrahedron 2005, 61, 1855–1862. (i) Figueroa-
Pe´rez, S.; Schmidt, R. R. Carbohydr. Res. 2000, 328, 95–102. (j)
Compostella, F.; Franchini, L.; De Libero, G.; Palmisano, G.; Ronchetti,
F.; Panza, L. Tetrahedron 2002, 58, 8703–8708. (k) Duclos, R. I., Jr. Chem.
Phys. Lipids 2001, 111, 111–138. (l) Milne, J. E.; Jarowickki, K.; Kocienski,
P. J.; Alonso, J. Chem. Commun. 2002, 426–427. (m) Van den Berg,
R. J. B. H. N.; Korevaar, C. G. N.; van der Marel, G. A.; Overkleeft, H. S.;
van Boom, J. H. Tetrahedron Lett. 2002, 43, 8409–8412.
(15) Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Izumi, K.; Xu, M.-H.; Lin,
G.-Q. J. Am. Chem. Soc. 2005, 127, 11956–11957.
(16) Yoon, H. J.; Kim, Y.-W.; Lee, B. K.; Lee, W. K.; Kim, Y.; Ha,
Y.-J. Chem. Commun. 2007, 79–81.
Initially we explored the cross metathesis reaction using
the second generation Grubbs catalyst, which is compatible
with a wide range of functionalities.13e,14b,17,19b In prelimi-
nary screening experiments, compound 7 was reacted with
a 2-fold excess of 1-hexadecene (9) in refluxing dichlo-
romethane to afford 6 at a 82% yield and an E/Z ratio of
18:1 (Scheme 2). Since the metathesis reaction proceeds
under thermodynamic control, both the yield and stereose-
(17) Morales-Serna, J. A.; Llaveria, J.; D´ıaz, Y.; Matheu, M. I.; Castillo´n,
S. Org. Biomol. Chem. 2008, doi 10.1039/b814882a.
(18) Disadee, W.; Ishikawa, T. J. Org. Chem. 2005, 70, 9399–9406.
(19) (a) Olofsson, B.; Somfai, P. J. Org. Chem. 2003, 68, 2514–2517.
(b) Torssell, S.; Somfai, P. Org. Biomol. Chem. 2004, 2, 1643–1646. (c)
Righi, G.; Ciambrone, S.; D’Achille, C.; Leonelli, A.; Bonini, C. Tetrahe-
dron 2006, 62, 11821–11826.
(20) (a) Martin, C.; Pru¨nk, W.; Bortolussi, M.; Bloch, R. Tetrahedron:
Asymmetry 2000, 11, 1585–1592. (b) He, L.; Byun, H.-S.; Bittman, R. J.
Org. Chem. 2000, 65, 7618–7626.
206
Org. Lett., Vol. 11, No. 1, 2009