Organic Letters
Letter
(3) 1,4-Addition: Zhang, Y.; Sigman, M. S. Org. Lett. 2006, 8, 5557−
5560. Jensen, K. H.; Pathak, T. P.; Zhang, Y.; Sigman, M. S. J. Am.
Chem. Soc. 2009, 131, 17074−17075. Pathak, T. P.; Gligorich, K. M.;
Welm, B. E.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 7870−7871.
Pathak, T. P.; Sigman, M. S. Org. Lett. 2011, 13 (10), 2774−2777.
Jana, R.; Pathak, T. P.; Jensen, K. H.; Sigman, M. S. Org. Lett. 2012, 14
(16), 4074−4077. Luan, Y.; Schaus, S. E. J. Am. Chem. Soc. 2012, 134,
19965−199678. Barbato, K. S.; Luan, Y.; Ramella, D.; Panek, J. S.;
Schaus, S. E. Org. Lett. 2015, 17 (23), 5812−5815.
(4) [4 + 2]-Cycloaddition: Selenski, C.; Pettus, T. R. R. J. Org. Chem.
2004, 69, 9196−9203. Alden-Danforth, E.; Scerba, M. T.; Lectka, T.
Org. Lett. 2008, 10 (21), 4951−4953. Wenderski, T. A.; Marsini, M.
A.; Pettus, T. R. R. Org. Lett. 2011, 13 (1), 118−121. Green, J. C.;
Brown, E. R.; Pettus, T. R R. Org. Lett. 2012, 14, 2929−2931.
(5) Luan, Y.; Sun, H.; Schaus, S. E. Org. Lett. 2011, 13 (24), 6480−
6483.
facilitate the formation of the oQM. 3,4-Dimethoxyphenol also
performed well in the condensation reaction with p-methoxy-
benzaldehyde dimethyl acetal and indene to afford chroman
13i.
Scalability of the reaction was demonstrated with 1.0 g of
dienophile. The reaction of sesamol, benzaldehyde dimethyl
acetal, and indene afforded 2.2 g of the desired product 13h in
71% yield, 3:1 dr (Scheme 2). Trituration of the isolated
product with boiling hexanes afforded a 64% yield and 5:1 dr.
Scheme 2. Multicomponent Reaction Scale Up
(6) Robustadial: (a) Xu, R.; Snyder, J. K.; Nakanishi, K. J. Am. Chem.
Soc. 1984, 106, 734−736. (b) Salomon, R. G.; Lal, K.; Mazza, S. M.;
Zarate, E. A.; Youngs, W. J. J. Am. Chem. Soc. 1988, 110, 5213−5214.
(c) Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. L.; Jacob, M.
R.; Khan, I. A.; Singh, I. P. Bioorg. Med. Chem. 2006, 14, 1750−1760.
Bharate, S. B.; Singh, I. P. Tetrahedron Lett. 2006, 47, 7021−7024.
(+)-Brazilin: (e) Craig, J. C.; Naik, A. R.; Pratt, R.; Johnson, E.;
Bhacca, N. S. J. Org. Chem. 1965, 30, 1573−1576. (f) Huang, Y.;
Zhang, J.; Pettus, T. R. R. Org. Lett. 2005, 7 (26), 5841−5844.
(g) Jung, Y.; Kim, I. J. Org. Chem. 2015, 80 (3), 2001−2005.
Procyanidin B3: (h) Oizumi, Y.; Mohri, Y.; Hirota, M.; Makabe, H. J.
Org. Chem. 2010, 75 (14), 4884−4886. YM-26734: (i) Oslund, R. C.;
Cermak, N.; Verlinde, C. L. M. J.; Gelb, M. H. Bioorg. Med. Chem. Lett.
2008, 18 (20), 5415−5419.
(7) (a) Gharpure, S. J.; Sathiyanarayanan, A. M.; Vuram, P. K. RSC
Adv. 2013, 3, 18279−18282. (b) Tan, W.; Du, B.-X.; Li, X.; Zhu, Xu;
Shi, F.; Tu, S.-J. J. Org. Chem. 2014, 79, 4635−4643. (c) Zhao, J. J.;
Zhang, Y. C.; Xu, M.-M.; Tang, M.; Shi, F. J. Org. Chem. 2015, 80,
10016−10024.
(8) (a) El-Sepelgy, O.; Haseloff, S.; Alamsetti, S. K.; Schneider, C.
Angew. Chem., Int. Ed. 2014, 53, 7923−7927. (b) Saha, S.; Schneider,
C. Org. Lett. 2015, 17, 648−651.
(9) (a) Hsiao, C.-C.; Liao, H.-H.; Rueping, M. Angew. Chem., Int. Ed.
2014, 53, 13258−13263. (b) Hsiao, C.-C.; Raja, S.; Liao, H.-H.;
Atodiresei, J.; Rueping, M. Angew. Chem., Int. Ed. 2015, 54, 5762−
5765.
(10) Zhao, J. J.; Sun, S.-B.; He, S.-H.; Wu, Q.; Shi, F. Angew. Chem.,
Int. Ed. 2015, 54, 5460−5464.
(11) Fan, J.; Wang, Z. Chem. Commun. 2008, 5381−5383.
(12) Triethyl silane reduction: (a) Zhu, Y.-H.; Zhang, M.; Li, Q.-Y.;
Liu, Q.; Zhang, J.; Yuan, Y.-Y.; Nan, F.-J.; Wang, M.-W. Chin. Chem.
Lett. 2014, 25, 693−698. (b) Bai, W.-J.; Green, J. C.; Pettus, T. R. R. J.
Org. Chem. 2012, 77, 379−387.
(13) Stable: (a) Jurd, L. Tetrahedron 1977, 33, 163. (b) Kopach, M.
E.; Harman, W. D. J. Am. Chem. Soc. 1994, 116, 6581−6592.
(c) Amouri, H.; Vaissermann, J. Organometallics 2000, 19, 1740−1748.
(d) Amouri, H.; Le Bras, J. Acc. Chem. Res. 2002, 35, 501−510.
(e) MacIntosh, A. D.; Yang, H.; Pike, R. D.; Sweigart, D. A. J.
Organomet. Chem. 2012, 719, 14−17.
In conclusion, we have developed two strategies to access
benzopyrans using Fe(III) salts as catalysts. The two-
component approach to access benzopyrans and 4H-chromenes
from o-hydroxybenzyl alcohols and olefins proceeds well under
Fe-catalysis. Moreover, Fe(III) salts will also mediate the one-
pot MCR via an in situ generated oQM from the condensation
of a phenol and an aldehyde or acetal. The MCR features the
use of readily available starting materials and performs well on
gram scale. Future studies will focus on the development of an
asymmetric catalytic approach and use in natural product
syntheses.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Optimization, experimental procedures, compound char-
acterization, and spectral data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(14) Robust leaving groups: (a) Chambers, J. D.; Crawford, J.;
Williams, H. W. R.; Dufresne, C.; Scheigetz, J.; Bernstein, M. A.; Lau,
C. K. Can. J. Chem. 1992, 70 (6), 1717−1732. (b) Huang, Y.; Pettus,
T. R. R. Synlett 2008, 2008, 1353−1356. (b) Marsini, M. A.; Huang,
Y.; Lindsey, C. C.; Wu, K.-L.; Pettus, T. R. R. Org. Lett. 2008, 10,
1477−1480.
ACKNOWLEDGMENTS
This research was supported by the NIH (R01 GM078240 and
P50 GM067041).
■
REFERENCES
■
(1) (a) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. Rev. 2005,
105, 4757−4778. (b) Rokita, S. E. Quinone Methides; Wiley: 2009.
(c) Willis, N. J.; Bray, C. D. Chem. - Eur. J. 2012, 18, 9160−9173.
(d) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.;
Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655−3664.
(2) (a) Pathak, T. P.; Sigman, M. S. J. Org. Chem. 2011, 76, 9210−
9215.
D
Org. Lett. XXXX, XXX, XXX−XXX