Table 1. Optimization of Reaction Conditionsa
entry
additive
ligand
conv (%)b
ee (%)c
1
ꢀ
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L2
L3
L4
93
73
30
74
72
85
87
71
88
87
84
90
93
93
85
95
94
2
I2
>95
65
3
TFA
4
L-CSA
66
5
piperidine HCl
93
3
6
morpholine HCl
78
3
3
3
3
3
3
3
3
Figure 1. Representative dihydrobenzodiazepinone and dihy-
drobenzodiazepine derivatives.
7
morpholine HBr
93
8
9d
morpholine TFA
>95
>95
49
morpholine TFA
10d,e
11d,f
12d,g
13d,h
14d,h
15d,h
16d,h
morpholine TFA
successful examples thus far reported on the asymmetric
reduction of seven-membered cyclic imines,8a,j,9d probably
owing to the relatively rigid and space-demanding features of
these imines. Thereby, an efficient catalyst is highly required
for the hydrogenation of these seven-membered-ring systems
with a unique skeleton. In view of the significance of these
intriguing heterocycles, together with our ongoing programs
directed to the development of an efficient method for the
asymmetric hydrogenation of heteroaromatic compounds10
and cyclic imines,11 we disclosed herein the Ir-catalyzed
asymmetric hydrogenation of seven-membered cyclic imines
of benzodiazepinones and -diazepines (Figure 1).
morpholine TFA
54
morpholine TFA
90
morpholine TFA
>95
10
morpholine TFA
3
3
3
morpholine TFA
>95
>95
morpholine TFA
a Conditions: 1a (0.125 mmol), [Ir(COD)Cl]2 (2 mol %), (R)-SynPhos
(4.4 mol %), additive (20 mol %), H2 (700 psi), DCM (3 mL), rt, 20 h.
b Determined by 1H NMR. c Determined by HPLC. d 10 mol % of
morpholine TFA was used. e EtOAc as solvent. f THF as solvent.
3
g PhMe as solvent. h DCM/PhMe (1:2) as solvent.
(8) (a) Willoughby, C. A.; Buchwald, S. L. J. Org. Chem. 1993, 58, 7627.
(b) Morimoto, T.; Achiwa, K. Tetrahedron: Asymmetry 1995, 6, 2661. (c)
Chang, M.; Li, W.; Hou, G.; Zhang, X. Adv. Synth. Catal. 2010, 352, 3121.
(d) Yamagata, T.; Tadaoka, H.; Nagata, M.; Hirao, T.; Kataoka, Y.;
^
Ratovelomanana-Vidal, V.; Genet, J.-P.; Mashima, K. Organometallics
2006, 25, 2505. (e) Cobley, J. C.; Henschke, J. P. Adv. Synth. Catal. 2003,
345, 195. (f) Guiu, E.; Claver, C.; Benet-Buchholz, J.; Castillon, S. Tetra-
Initially, catalyst [Ir(COD)Cl]2/(R)-SynPhoswaschosen
to hydrogenate the model substrate 11-(4-chlorophenyl)-
5H-pyrrolo [2,1-c][1,4]benzodiazepin-5-one (1a); moder-
ate enantioselectivity was obtained with high conversion
(Table 1, entry 1). This preliminary result encouraged us to
explore the additive effect on the reactivity and enantio-
selectivity. With the addition of 20 mol % of I2,12 the
reaction gave full conversion, but the ee dropped drama-
tically to 30% (entry 2). Acid additives, such as tri-
fluoroacetic acid, L-camphorsulfonic acid (L-CSA) were
also examined,13 and moderate enantioselectivities were
ꢀ
hedron: Asymmetry 2004, 15, 3365. (g) Oppolzer, W.; Wills, M.; Starkemann,
C.; Bernardinelli, G. Tetrahedron Lett. 1990, 29, 4117. (h) Jackson, M.;
Lenon, I. C. Tetrahedron Lett. 2007, 48, 1831. (i) Li, C. Q.; Xiao, J. L. J . Am.
Chem. Soc. 2008, 130, 13208. (j) Chen, F.; Ding, Z.; Qin, J.; Wang, T.; He, Y.;
Fan, Q.-H. Org. Lett. 2011, 13, 4348. (k) Chang, M.; Li, W.; Zhang, X.
Angew. Chem., Int. Ed. 2011, 50, 10679. (l) Ding, Z.-Y.; Chen, F.; Qin, J.; He,
Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706. (m) Catalytic
Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2000.
(9) (a) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1996, 118, 4916. (b) Vedejes, E.; Trapencieris, P.;
Suna, E. J. Org. Chem. 1999, 64, 6724. (c) Mao, J.; Baker, D. C. Org.
Lett. 1999, 1, 841. (d) Rueping, M.; Merino, E.; Koenigs, R. M. Adv.
Synth. Catal. 2010, 352, 2629. (e) Wu, J.; Wang, F.; Ma, Y.; Cui, X.; Cun,
L.; Zhu, J.; Deng, J.; Yu, B. Chem. Commun. 2006, 1766. (f) Canivet, J.;
€
Susss-Fink, G. Green Chem. 2007, 9, 391. (g) Matharu, D. S.; Martins,
J. E. D.; Wills, M. Chem.;Asian J. 2008, 3, 1374. (h) Evanno, L.;
Ormala, J.; Pihko, P. M. Chem.;Eur. J. 2009, 15, 12963. (i) Rueping,
M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45,
6751. (j) Rueping, M.; Brinkmann, C.; Antonchick, A. P.; Atodiresei, L.
Org. Lett. 2010, 12, 4604. (k) Chen, X.; Zheng, Y.; Shu, C.; Yuan, W.;
Liu, B.; Zhang, X. J. Org. Chem. 2011, 76, 9109. (l) Han, Z.-Y.; Xiao, H.;
Gong, L.-Z. Bioorg. Med. Chem. Lett. 2009, 19, 3729.
(10) (a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou,
Y.-G. J. Am. Chem. Soc. 2003, 125, 10536. (b) Zhou, Y.-G. Acc. Chem.
Res. 2007, 40, 1357. (c) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-
G. Chem. Rev. 2012, 112, 2557.
(12) (a) Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26.
(b) Vogl, E. M.; Groger, H.; Shibasaki, M. Angew. Chem., Int. Ed. 1999,
38, 1570. (c) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425.
(d) Chan, Y. N. C.; Osborn, J. A. J. Am. Chem. Soc. 1990, 112, 9400. (e)
€
Dorta, R.; Broggini, D.; Stoop, R.; Ruegger, H.; Spindler, F.; Togni, A.
€
Chem.;Eur. J 2004, 10, 267.
(13) (a) Blaser, H.-U. Adv. Synth. Catal. 2002, 344, 17. (b) Li, Z.-W.;
Wang, T.-L.; He, Y.-M.; Wang, Z.-J.; Fan, Q.-H.; Pan, J.; Xu, L.-J. Org.
Lett. 2008, 10, 5265. (c) Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J.
Angew. Chem., Int. Ed. 2009, 48, 6524. (d) Tadaoka, H.; Cartigny, D.;
^
Nagano, T.; Gosavi, T.; Ayad, T.; Genet, J.-P.; Ohshima, T.;
(11) (a) Gao, K.; Yu, C.-B.; Li, W.; Zhou, Y.-G.; Zhang, X. Chem.
Commun. 2011, 7845. (b) Gao, K.; Yu, C.-B.; Wang, D.-S.; Zhou, Y.-G.
Adv. Synth. Catal. 2012, 354, 483. (c) Wang, Y.-Q.; Lu, S.-M.; Zhou,
Y.-G. J. Org. Chem. 2007, 72, 3729. (d) Yu, C.-B.; Wang, D.-W.; Zhou,
Y.-G. J. Org. Chem. 2009, 74, 5633.
Ratovelomanana-Vidal, V.; Mashima, K. Chem.;Eur. J 2009, 15,
9990. (e) Imwinkelried, R. Chimia 1997, 51, 300. (f) Hou, G.; Li, W.;
Ma, M.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 12844. (g)
Pautigny, C.; Jeulin, S.; Ayad, T.; Zhang, Z.; Genet, J.-P.; Ratovelo-
manana-Vidal, V. Adv. Synth. Catal. 2008, 350, 2525.
^
Org. Lett., Vol. 14, No. 15, 2012
3891