Inorg. Chem. 2009, 48, 423-425
Gold(I) Chloride Coordinated 3-Hexyne
Jiang Wu, Peter Kroll,* and H. V. Rasika Dias*
Department of Chemistry and Biochemistry, The UniVersity of Texas at Arlington,
Arlington, Texas 76019
Received October 30, 2008
A linear gold(I) complex featuring a simple, unstrained alkyne has
been synthesized using AuCl and 3-hexyne and characterized using
X-ray crystallography. Density functional theory calculations show
that σ donation from alkyne f Au dominates over the Au f
alkyne π back-donation.
Gold was long considered to be chemically inert and a
poor catalyst.1 However, during the past few years, novel
reactions mediated by gold have been reported in the
literature on a regular basis and in ever-increasing num-
bers.2-5 Alkynes are some of the most commonly used
substrates in gold-catalyzed organic synthetic processes.
Furthermore, alkyne complexes of gold are believed to be
key intermediates in numerous homogeneous and heteroge-
neous processes. However, isolable gold alkyne complexes
are rare. Structurally authenticated gold alkyne compounds
that have been described in the literature (Figure 1) have
strained alkynes like 3,3,6,6-tetramethyl-1-thiacyclohept-4-
yne 1,1-dioxide (1)6 and 3,3,6,6-tetramethyl-1-thiacyclohept-
4-yne (2)6 or an alkyne in a tethered framework (3).7 A
Figure 1. Structurally characterized gold(I) alkyne complexes.
limited number of gold(I)-coordinated metal acetylides and
spectroscopically detected gold alkynes are also known.8
In this paper, we report the isolation and structural
characterization of Au(EtCt CEt)Cl (4), a metal coordination
complex featuring a simple unstrained alkyne bonded to
AuCl (gold chlorides are used routinely in catalytic homo-
geneous processes mediated by gold). First attempts at the
isolation of simple gold(I) alkynes including Au(EtCt CEt)Cl
were reported by Hu¨ttel and Forkl in 1972.9 However, they
have not been able to characterize them in detail.
The treatment of AuCl with 3-hexyne (EtCt CEt) in
methylene chloride at -20 °C led to Au(EtCt CEt)Cl, which
could be crystallized to obtain colorless, needle-shaped
crystals (Scheme 1).10 Au(EtCt CEt)Cl is an air-sensitive
solid and decomposes easily and rapidly at room temperature,
forming black deposits. Au(EtCt CEt)Cl is stable in solution
for hours at low temperature but decomposes slowly at room
temperature, as is evident from the deposition of dark solids,
* To whom correspondence should be addressed. E-mail: dias@uta.edu.
(1) Hammer, B.; Norskov, J. K. Nature 1995, 376, 238–40.
(2) Schmidbaur, H.; Schier, A. Gold Organometallics, in ComprehensiVe
Organometallic Chemistry III; Elsevier: Amsterdam, The Netherlands,
2007; Vol. 2, pp 251-307.
(3) Haruta, M. Gold Bull. 2004, 37, 27–36. Bond, G. C.; Louis, C.;
Thompson, D. T. Catalysis by Gold; Imperial College: London, 2006;
Vol. 6. Hutchings, G. J. Catal. Today 2007, 122, 196–200. Min, B. K.;
Friend, C. M. Chem. ReV. 2007, 107, 2709–2724. Hashmi, A. S. K.
Chem. ReV. 2007, 107, 3180–3211. Gorin, D. J.; Toste, F. D. Nature
2007, 446, 395–403. Ishida, T.; Haruta, M. Angew. Chem., Int. Ed.
2007, 46, 7154–7156. Hutchings, G. J.; Brust, M.; Schmidbaur, H.
Chem. Soc. ReV. 2008, 37, 1759–1765. Marion, N.; Nolan, S. P. Chem.
Soc. ReV. 2008, 37, 1776–1782. Hashmi, A. S. K.; Rudolph, M. Chem.
Soc. ReV. 2008, 37, 1766–1775. Goodman, D. W. Nature 2008, 454,
948–949. Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. ReV. 2008,
108, 3351–3378. Arcadi, A. Chem. ReV. 2008, 108, 3266–3325.
Widenhoefer, R. A. Chem.sEur. J. 2008, 14, 5382–5391. Li, Z.;
Brouwer, C.; He, C. Chem. ReV. 2008, 108, 3239–3265. Bongers, N.;
Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178–2181.
(4) Fuerstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410–
3449.
(8) Mingos, D. M. P.; Yau, J.; Menzer, S.; Williams, D. J. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1894–1895. Lang, H.; Koehler, K.; Zsolnai,
L. Chem. Commun. 1996, 204, 2043–2044. Koehler, K.; Silverio, S. J.;
Hyla-Kryspin, I.; Gleiter, R.; Zsolnai, L.; Driess, A.; Huttner, G.; Lang,
H. Organometallics 1997, 16, 4970–4979. Yip, S.-K.; Cheng, E. C.-
C.; Yuan, L.-H.; Zhu, N.; Yam, V. W.-W. Angew. Chem., Int. Ed.
2004, 43, 4954–4957. Fornies, J.; Fuertes, S.; Martin, A.; Sicilia, V.;
Lalinde, E.; Moreno, M. T. Chem.sEur. J. 2006, 12, 8253–8266.
Akana, J. A.; Bhattacharyya, K. X.; Mueller, P.; Sadighi, J. P. J. Am.
Chem. Soc. 2007, 129, 7736–7737. Zhang, S.; Chandra, K. L.; Gorman,
C. B. J. Am. Chem. Soc. 2007, 129, 4876–4877.
(5) Garcia-Mota, M.; Cabello, N.; Maseras, F.; Echavarren, A. M.; Perez-
Ramirez, J.; Lopez, N. ChemPhysChem 2008, 9, 1624–1629.
(6) Schulte, P.; Behrens, U. Chem. Commun. 1998, 1633–1634.
(7) Shapiro, N. D.; Toste, F. D. Proc. Natl. Acad. Sci. 2008, 105, 2779–
2782.
(9) Hu¨ttel, R.; Forkl, H. Chem. Ber. 1972, 105, 1664–1673.
10.1021/ic8020854 CCC: $40.75 2009 American Chemical Society
Inorganic Chemistry, Vol. 48, No. 2, 2009 423
Published on Web 12/15/2008