Aia-Containing Somatostatin Mimetics
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 1 103
(5) Gillies, G. Somatostatin: The neuroendocrine story. Trends Pharmacol.
Sci. 1997, 18, 87–95.
(6) Hoyer, D.; Bell, G. I.; Epelbaum, J.; Fenuik, W.; Humphrey, P. P. A.;
O’Carroll, A.-M.; Patel, Y. C.; Schonbrunn, A.; Taylor, J. E.; Reisine,
T. Classification and nomenclature of somatostatin receptors. Trends
Pharmacol. Sci. 1995, 16, 86–88.
quantification of the data using a computer-assisted image process-
ing system.22,52 Tissue standards containing known amounts of
isotopes, cross-calibrated to tissue-equivalent ligand concentrations,
were used for quantification.52
[35S]GTPγS Binding Assay. Chinese hamster lung fibroblasts
(CCL39) stably expressing the human sst5 (CCL-sst5) were kindly
provided by D. Hoyer (Novartis Pharma, Basel, Switzerland) and
were grown in DMEM with GlutaMAX-I/Ham’s F-12 Nut. Mix.
with GlutaMAX-I (1:1) supplemented with 10% (v/v) fetal bovine
serum, 100 U/mL penicillin, 100 µg/mL streptomycin, and 400 µg/
mL Geneticin (G418-sulfate), and cultured at 37 °C and 5% CO2.
All culture reagents were from Gibco BRL, Life Technologies
(Grand Island, NY). Cell membrane pellets of CCL-sst5 were
prepared as previously described and stored at -80 °C.53
[35S]GTPγS binding assay was performed on 20 µm thick cryostat
(Microm HM 500, Walldorf, Germany) sections of the membrane
pellets, mounted on microscope slides. The sections were first
preincubated for 10 min at room temperature in assay buffer (100
mM Tris-HCl buffer (pH 8.2), 1% BSA, 40 mg/L bacitracin 10
mM MgCl2) and then for 30 min in assay buffer containing 50 µM
GDP. Subsequently the sections were incubated for 2 h at room
temperature in assay buffer containing 50 µM GDP, 40 pM (100000
cpm/ml) [35S]GTPγS (1250 Ci/mmol; PerkinElmer, Waltham, MA),
and the absence (basal level) or presence (stimulated) of the
compounds to be tested at the concentrations indicated. At the end
of the incubation, the sections were washed on ice with assay buffer.
After a brief dip in assay buffer without BSA and bacitracin to
remove excess salts, the sections were dried and exposed to Kodak
BioMax MR films. The relative optical densities of the pellets were
determined using the MCID Basic 7.0 program (Imaging Research
Inc.). Values were expressed as percentage over basal level.
Molecular Modeling. The calculations were carried out using
Macromodel 5.054 with Maestro 8.0 as a graphic interface.
Analogues 10g and 21 were built using the following constraints:
ꢁ2 (Lys) ) ꢁ3 (Lys) ) ꢁ4 (Lys) ) ꢁ5 (Lys) ) 180°. The MM3*
force field55 was used for energy minimization in combination with
the GB/SA solvation model of Still et al.,24 using MacroModel’s
default parameters for an aqueous medium. Conformational searches
were carried out using the pure low mode search.23 Structures were
generated and minimized by means of the Polak-Ribie`re conjugate
gradient method as implemented in MacroModel, using a gradient
convergence criterion of 0.1 kJ/mol Å. The resulting conformations
were again minimized to an energy convergence of 0.01 kJ/mol Å.
Duplicate structures and those greater than 50 kJ/mol above the
global minimum were discarded. The remaining structures were
clustered into families using Xcluster 1.7. A rmsd value of 0.2 Å
was used.
(7) Melacini, G.; Zhu, Q.; Osapay, G.; Goodman, M. A refined model
for the somatostatin pharmacophore: conformational analysis of
lanthionine-sandostatin analogs. J. Med. Chem. 1997, 40, 2252–2258.
(8) Veber, D. F. Design and discovery in the development of peptide
analogs. In Peptides, Chemistry and Biology: Proceedings of the 12th
American Peptide Symposium, Cambridge, Massachusetts, June 16-
21, 1991 ; Smith, J. A., Rivier, J. E., Eds.; ESCOM: Leiden, The
Netherlands, 1992; pp 3-14.
(9) Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.;
Marbach, P.; Petcher, T. J.; Pless, J. Sms 201-995s A very potent
and selective octapeptide analog of somatostatin with prolonged action.
Life Sci. 1982, 31, 1133–1140.
(10) Veber, D. F.; Freidinger, R. M.; Perlow, D. S.; Paleveda, W. J.; Holly,
F. W.; Strachan, R. G.; Nutt, R. F.; Arison, B. H.; Homnick, C.;
Randall, W. C.; Glitzer, M. S.; Saperstein, R.; Hirschmann, R. A potent
cyclic hexapeptide analog of somatostatin. Nature 1981, 292, 55–58.
(11) Dalm, V. A. S. H.; Hofland, L. J.; Lamberts, S. W. J. Future clinical
prospects in somatostatin/cortistatin/somatostatin receptor field. Mol.
Cell. Endocrinol. 2008, 286, 262–277.
(12) Wolkenberg, S. E.; Thut, C. J. Recent progress in the discovery of
selective, nonpeptide ligands of somatostatin receptors. Curr. Opin.
Drug DiscoVery DeV. 2008, 11, 446–457.
(13) Jones, R. M.; Boatman, P. D.; Semple, G.; Shin, Y. J.; Tamura, S. Y.
Clinically validated peptides as templates for de novo peptidomimetic
drug design at G-protein-coupled receptors. Curr. Opin. Pharmacol.
2003, 3, 530–543.
(14) Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H. A.; Hoyer, D.;
Bruns, C. Opportunities in somatostatin research: Biological, chemical
and therapeutic aspects. Nat. ReV. Drug DiscoVery 2003, 2, 999–1017.
(15) Yang, L. H. Nonpeptide somatostatin receptor ligands. Annu. Rep.
Med. Chem. 1999, 34, 209–218.
(16) Feytens, D.; Cescato, R.; Reubi, J. C.; Tourwe, D. New sst(4/5)-
selective somatostatin peptidomimetics based on a constrained tryp-
tophan scaffold. J. Med. Chem. 2007, 50, 3397–3401.
(17) Hay, B. A.; Cole, B. M.; DiCapua, F.; Kirk, G. W.; Murray, M. C.;
Nardone, R. A.; Pelletier, D. J.; Ricketts, A. P.; Robertson, A. S.;
Siegel, T. W. Small molecule somatostatin receptor subtype-2
antagonists. Bioorg. Med. Chem. Lett. 2001, 11, 2731–2734.
(18) Yang, L. H.; Berk, S. C.; Rohrer, S. P.; Mosley, R. T.; Guo, L. Q.;
Underwood, D. J.; Arison, B. H.; Birzin, E. T.; Hayes, E. C.; Mitra,
S. W.; Parmar, R. M.; Cheng, K.; Wu, T. J.; Butler, B. S.; Foor, F.;
Pasternak, A.; Pan, Y. P.; Silva, M.; Freidinger, R. M.; Smith, R. G.;
Chapman, K.; Schaeffer, J. M.; Patchett, A. A. Synthesis and biological
activities of potent peptidomimetics selective for somatostatin receptor
subtype 2. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 10836–10841.
(19) Yang, L. H.; Pan, Y. P.; Guo, L. Q.; Morriello, G.; Pasternak, A.;
Rohrer, S.; Schaeffer, J.; Patchett, A. A. The design and synthesis of
nonpeptide somatostatin receptor agonists. In Peptides for the new
millennium: Proceedings of the 16th American Peptide Symposium,
Minneapolis, Minnesota, June 26-July 1, 1999; Tam, G. A., Barany,
G., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp250-252.
(20) Zhou, C. Y.; Guo, L. Q.; Morriello, G.; Pasternak, A.; Pan, Y. P.;
Rohrer, S. P.; Birzin, E. T.; Huskey, S. E. W.; Jacks, T.; Schleim,
K. D.; Cheng, K.; Schaeffer, J. M.; Patchett, A. A.; Yang, L. H.
Nipecotic and isonipecotic amides as potent and selective somatostatin
subtype-2 receptor agonists. Bioorg. Med. Chem. Lett. 2001, 11, 415–
417.
Acknowledgment. D. Feytens is a research assistant of the
Fund for Scientic Research Flanders (FWO-Vlaanderen). We
thank Dr. M. Kofod-Hansen from Novo Nordisk for a gift of
1,2-dihydro-1-methanesulfonyl spiro[3H-indole-3,4-piperidine].
Supported by FWO-grant no. G.0008.08. We thank Prof. A.
Carotenuto for providing us the coordinates of 23.
(21) Pulka, K.; Feytens, D.; Van den Eynde, I.; De Wachter, R.; Kosson,
P.; Misicka, A.; Lipkowski, A.; Chung, N. N.; Schiller, P. W.; Tourwe,
D. Synthesis of 4-amino-3-oxo-tetrahydroazepino[3,4-b]indoles: new
conformationally constrained Trp analogs. Tetrahedron 2007, 63,
1459–1466.
(22) Siehler, S.; Hoyer, D. Characterisation of human recombinant soma-
tostatin receptors. 4. Modulation of phospholipase C activity. Naunyn-
Schmiedebergs Arch. Pharmacol. 1999, 360, 522–532.
(23) Kolossvary, I.; Guida, W. C. Low mode search. An efficient, automated
computational method for conformational analysis: Application to
cyclic and acyclic alkanes and cyclic peptides. J. Am. Chem. Soc. 1996,
118, 5011–5019.
(24) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. Semi-
analytical treatment of solvation for molecular mechanics and dynam-
ics. J. Am. Chem. Soc. 1990, 112, 6127–6129.
Supporting Information Available: Characterizations of com-
pounds 6-22. HPLC-purity data of compounds 6-22. HPLC-
chromatogram traces of compounds 10a-k, 14a-e, 18, and 21.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.;
Guillemin, R. Hypothalamic polypeptide that inhibits secretion of
immunoreactive pituitary growth-hormone. Science 1973, 179, 77–
79.
(2) Janecka, A.; Zubrzycka, M.; Janecki, T. Somatostatin analogs. J. Pept.
Res. 2001, 58, 91–107.
(3) Reichlin, S. Somatostatin 0.1. New Engl. J. Med. 1983, 309, 1495–
(25) Moinet, C.; Contour-Galcera, M. O.; Poitout, L.; Morgan, B.; Gordon,
T.; Roubert, P.; Thurieau, C. Novel nonpeptide ligands for the
somatostatin sst(3) receptor. Bioorg. Med. Chem. Lett. 2001, 11, 991–
995.
1501.
(4) Reichlin, S. Somatostatin 0.2. New Engl. J. Med. 1983, 309, 1556–
1563.