D. Shibata et al. / Tetrahedron Letters 49 (2008) 7161–7164
7163
R1R2NH
H
H
NR1R2
OH
N
NR1R2
H
N
NR1R2
CF3
H
N
N
N
N
N
N
1,3-H Shift
CF3
O
O
CF3
CF3
—H2O
COCF3
7
COCF3
8'
COCF3
8
C(OH)2CF3
9
Scheme 4.
1996, 3017–3022; (c) Okada, E.; Tsukushi, N. Synthesis 2000, 499–501; (d)
Gladiali, S.; Chelucci, G.; Mudadu, M. S.; Gastaut, M.-A.; Thummel, R. P. J. Org.
Chem. 2001, 66, 400–405; (e) Elmaaty, T. A.; Castle, L. W. Synthesis 2006, 1402–
1404; (f) Chelucci, G.; Addis, D.; Baldino, S. Tetrahedron Lett. 2007, 48, 3359–
3362; (g) Chelucci, G.; Baldino, S. Tetrahedron Lett. 2008, 49, 2738–2742; (h)
Weitgenant, J. A.; Mortison, J. D.; O’Neill, D. J.; Mowery, B.; Puranen, A.;
Helquist, P. J. Org. Chem. 2004, 69, 2809–2815.
1
N
H
10N
H
NMe2
H
NMe2
H
N
no hydrogen bond
O
O
CF3
CF3
COCF3
8a
COCF3
10
3. (a) Kumar, R. S.; Arunachalam, S. Polyhedron 2007, 26, 3255–3262; (b) Liu, J.;
Zheng, W.; Shi, S.; Tan, C.; Chen, J.; Zheng, K.; Ji, L. J. Inorg. Biochem. 2008, 102,
193–202; (c) Efthimiadou, E. K.; Katsarou, M. E.; Karaliota, A.; Psomas, G. J.
Inorg. Biochem. 2008, 102, 910–920; (d) Mei, W.-J.; Wang, N.; Liu, Y.-J.; Ma, Y.-
Z.; Wang, D.-Y.; Liang, B.-X. Trans. Met. Chem. 2008, 33, 499–503.
Figure 1.
4. (a) Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779–2782; (b) Durand, J.;
Gladiali, S.; Erre, G.; Zangrando, E.; Milani, B. Organometallics 2007, 26, 810–
818; (c) Glazer, E. C.; Magde, D.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 8544–8551;
(d) Mo, W.; Liu, H.; Xiong, H.; Li, M.; Li, G. Appl. Catal. A 2007, 333, 172–176; (e)
Yu, X.; Lin, H.; Caia, Z.; Lin, H. Tetrahedron Lett. 2007, 48, 8615–8618.
5. Tzalis, D.; Knochel, P. Tetrahedron Lett. 1999, 40, 3685–3688.
6. (a) Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129–3170; (b) Chelucci,
G.; Loriga, G.; Murineddub, G.; Pinnab, G. A. Tetrahedron Lett. 2003, 43,
3601–3604; (c) Elke, S. Eur. J. Org. Chem. 2003, 1145–1152; (d) Sheen, W.-S.;
Gau, H.-M. Inorg. Chim. Acta 2004, 357, 2279–2284; (e) Chelucci, G.; Muroni, D.;
Manca, I. J. Mol. Catal. A 2005, 225, 11–14; (f) Roelfes, G.; Boersma, A. J.; Feringa,
B. L. Chem. Commun. 2006, 635–637.
7. (a) Liu, Y.-J.; Guan, X.-Y.; Wei, X.-Y.; He, L.-X.; Mei, W.-J.; Yao, J.-H. Trans. Met.
Chem. 2008, 33, 289–294; (b) Kumar, R. S.; Arunachalam, S.; Periasamy, V. S.;
Preethy, C. P.; Riyasdeen, A.; Akbarsha, M. A. Polyhedron 2008, 27, 1111–1120;
(c) Rao, R.; Patra, A. K.; Chetana, P. R. Polyhedron 2008, 27, 1343–1352; (d) Gao,
F.; Chao, H.; Weia, Y.-F.; Yuana, Y.-X.; Penga, B.; Chena, X.; Zhenga, K.-C.; Ji,
L.-N. Helv. Chim. Acta 2008, 91, 395–410.
8. (a) Hojo, M.; Masuda, R.; Okada, E. Tetrahedron Lett. 1987, 28, 6199–6200; (b)
Hojo, M.; Masuda, R.; Okada, E.; Miya, H. Synthesis 1989, 870–873.
9. (a) Okada, E.; Tsukushi, N. Synlett 1999, 210–212; (b) Okada, E.; Tsukushi, N.;
Shimomura, N. Synthesis 2000, 237–242.
unstable. This is a great difference in reactivity between the 8-
quinoline system 7 and the naphthalene one 5, as in the naphtha-
lene system this type of intermediate, for example, 10 was not iso-
lated and also not detected (Fig. 1).12 Probably, it is thought that in
8a–c, the additional hydrogen bond between H-1 and N-10, which
cannot exist in the naphthalene system 10, has contributed to the
stability of 8a–c, namely, has interrupted the dehydration accom-
panied by aromatization. We attempted the NMR experiment,
where 8a was solved in DMSO-d6 as a solvent to disfavor the
hydrogen bond between H-1 and N-10, allowed to stand at 33 °C,
and the reaction progress was monitored by 1H NMR. It was found
that 8a is gradually converted to 9a under the above-described
conditions as follows: conversion/standing time; 38%/3 days;
100%/7 days. It is thought that this result supports our speculation
on stabilization of the intermediates 8a–c by the intramolecular
hydrogen bond.
10. Okada, E.; Tsukushi, N.; Otsuki, Y.; Nishiyama, S.; Fukuda, T. Synlett 1999, 126–
128 and references cited therein.
In summary, we have demonstrated a simple and efficient ac-
cess to CF3-containing 1,10-phenanthrolines 9, which are not easily
obtained by other methods, via the pyridine-ring formation reac-
tion of N-propargyl-8-quinolylamine derivative 7 with amines.
Moreover, we succeeded in the isolation of the intermediates,
1,4-dihydro-1,10-phenanthrolin-4-ols 8a–c. Our literature search
did not reveal any previous reports on the isolation of 1,4-dihy-
dro-1,10-phenanthrolin-4-ols.
11. Okada, E.; Tsukushi, N.; Shimomura, N. Synthesis 2000, 1822–1824 and
references cited therein.
12. Okada, E.; Tone, H.; Tsukushi, N.; Otsuki, Y.; Takeuchi, H.; Hojo, M. Heterocycles
1997, 45, 339–346.
13. A typical procedure for the synthesis of 1,4-dihydro-1,10-phenanthrolin-4-ols 8a–
c: To a solution of 7 (187 mg, 0.5 mmol) in CH3CN (5 mL) was added aqueous
solution (50%) of dimethylamine (51 mg, 0.56 mmol), and the mixture was
stirred at room temperature for 2 h. Evaporation of the solvent in vacuo gave
practically pure 8a (205 mg, 98%); mp 123–124 °C (dec) (n-hexane/AcOEt); 1H
NMR (500 MHz, CDCl3): d 9.48 (dd, 1H, J = 1.5, 8.5 Hz, H-7), 8.88 (br d, 1H,
J = 4.0 Hz, NH), 8.81 (dd, 1H, J = 1.5, 4.0 Hz, H-9), 8.72 (s, 1H, H-5), 7.62 (dd, 1H,
J = 4.0, 8.5 Hz, H-8), 7.76–7.28 (br, 1H, OH), 6.72 (d, 1H, J = 4.0 Hz, H-2), 3.99 (d,
1H, Jgem = 13.0 Hz, CH2), 2.82 (d, 1H, Jgem = 13.0 Hz, CH2), 2.31 (s, 6H, N(CH3)2);
IR (KBr, cmꢀ1): 3402, 3094, 1697, 1676; Anal. Calcd for C18H15F6N3O2: C, 51.56;
H, 3.61; N, 10.02. Found: C, 51.63; H, 3.32; N, 9.89.
Acknowledgments
We would like to thank the Japan Society for the Promotion of
Science (JSPS), and the Centre National de la Recherche Scientifique
(CNRS) for support of this research, the Direction des Relations
Internationales (DRI) of the CNRS for travel funds (M.M.) and JSPS
for a research fellowship (M.M.).
14. A typical procedure for the synthesis of 1,10-phenanthrolines 9a–c from 1,4-
dihydro-1,10-phenanthrolin-4-ols 8a–c: A solution of 8a (210 mg, 0.5 mmol) in
CF3CO2H (2 mL) was stirred at reflux temperature for 30 min. The mixture was
washed with saturated solution of Na2CO3, extracted with AcOEt, and dried
over Na2SO4. The solvent was evaporated in vacuo, and the crude product was
purified by recrystallization from n-hexane and AcOEt to give 9a (130 mg,
62%); mp 161–162 °C (n-hexane/AcOEt); 1H NMR (500 MHz, CD3CN): d 9.38 (d,
1H, J = 8.5 Hz, H-7), 9.30 (s, 1H, H-2), 9.12 (d, 1H, J = 4.0 Hz, H-9), 8.79 (s, 1H, H-
5), 7.95 (br s, 2H, OH), 7.74 (dd, 1H, J = 4.0, 8.5 Hz, H-8), 3.88 (s, 2H, CH2), 2.28
(s, 6H, N(CH3)2); IR (KBr, cmꢀ1): 3352, 3115; Anal. Calcd for C18H15F6N3O2: C,
51.56; H, 3.61; N, 10.02. Found: C, 51.83; H, 3.85; N, 9.75.
References and notes
1. (a) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine Chemistry; Kodansha
& Elsevier Biomedical: Tokyo, 1982; pp 1–240; (b) Welch, J. T. Tetrahedron
1987, 43, 3123–3197; (c) Filler, R.; Kobayashi, Y.; Yagupolskii, L. M.
Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications;
Elsevier: Amsterdam, 1993; pp 1–380; (d) Burger, K.; Wucherpfennig, U.;
Brunner, E. Adv. Heterocycl. Chem. 1994, 60, 1–64.
15. A typical procedure for the one-pot synthesis of 1,10-phenanthrolines 9d–f from N-
propargyl-5,7-bis(trifluoroacetyl)-8-quinolylamine 7: To a solution of 7 (187 mg,
0.5 mmol) in CH3CN (5 mL) were added p-anisidine (65 mg, 0.53 mmol) and
triethylamine (25 mg, 0.25 mmol), and the mixture was stirred at room
temperature for 4 h. Without work-up, to the reaction mixture was added
CF3CO2H (0.19 mL, 2.6 mmol), and then it was further stirred for 5 min at room
temperature. The mixture was washed with saturated solution of Na2CO3,
extracted with AcOEt, and dried over Na2SO4. Evaporation of the solvent gave a
2. (a) Katritzky, A. R.; Long, Q.-H.; Malhotra, N.; Ramanarayanan, T. A.; Vedage, H.
Synthesis 1992, 911–913; (b) Riesgo, E. C.; Jin, X.; Thummel, R. P. J. Org. Chem.