Reich et al.
At the time we began this work,5 1T was the only localized
carbanion triple ion to be characterized (others have been found
since6a), although triple ions formed by delocalized lithium
π-complexes such as cyclopentadienyl lithiums (lithocenes),6b
and pentadienyls7a,8 as well as lithium amides,9a,b,10,11 and
ꢀ-keto12 and lithium ꢀ-imino9c enolates were known. We
undertook an NMR spectroscopic examination of 1-Li to help
better define the solution structure of this interesting system
than was possible when earlier studies were performed.1e,5 We
found that the structural characteristics and dynamic behavior
of the compound are even more unusual than previously
reported.
Results and Discussion
We have used three different THF-containing mixed solvents
for the experiments on 1-Li. This was necessary so that the
full range of temperatures (from -135 °C to +60 °C) could be
covered. Our workhorse solvent was 3:2 THF/ether, but 3:2:1
Me2O/THF/ether and 1:3 THF/Me2O were also used for very
low-temperature work. The latter mixture was especially crucial
for the rapid injection NMR (RINMR) work, since THF readily
crystallized from the other mixtures below -130 °C when the
sample was stirred (although unstirred samples gave long-lasting
supersaturated solution appropriate for standard variable tem-
perature work). We believe these three mixtures to have
comparable solvation properties for lithium reagents. For
example, the n-BuLi dimer/tetramer association constant was
66, 63, and 41 M-1 in the three solvents, and the monomer/
dimer association constant of 2-ethylphenyllithium was 0.19 M-1
in both 3:2 THF/ether and 3:2:1 Me2O/THF/ether at -140 °C.4e
The ratio of 1S, 1C and 1T to be discussed below are also very
similar in these solvent mixtures. When direct rate comparisons
were made, every effort was made to compare experiments in
identical solvent mixtures, but occasionally comparisons be-
tween different solvents were useful. The lithium reagents were
also briefly examined in diethyl ether, to determine the effects
on structure of a lower dielectric constant solvent.
Solutions of 1-Li could be prepared by the reported procedure
of metalation of 1-H with MeLi in THF at room temperature.1c
Such solutions were suitable for some NMR spectroscopic work,
and were used to prepare the selenide 1-SePh by reaction with
diphenyl diselenide and the iodide 1-I by reaction with iodine.
However, it was more convenient to prepare samples im-
mediately before use by the Li/Se exchange13a of 1-SePh with
n-BuLi, n-Bu6Li or Et6Li (half-life of ca. 40 min at -130 °C).
This technique produced clean solutions of 1-Li which were
adequate for careful spectroscopic or kinetic studies. The
BuSePh formed did not interfere with the spectroscopic work.
13C enriched 1-SePh was prepared as previously described using
[13C]formaldehyde via [13C](PhSe)2CH2,4b or by a shorter
synthesis in which [13C]chloroform was reductively silylated
to produce [13C]1-H,14 which was metalated by the literature
procedure1c and quenched with Ph2Se2.
(3) Hiller, W.; Layh, M.; Uhl, W. Angew. Chem., Int. Ed. Engl. 1991, 30,
324–326.
¨
(4) (a) Reich, H. J.; Sikorski, W. H.; Gudmundsson, B. O.; Dykstra, R. R.
J. Am. Chem. Soc. 1998, 120, 4035–4036. (b) The sample temperature during
NMR experiments was measured using the tris(trimethylsilyl)methane internal
13C NMR chemical shift thermometer: Sikorski, W. H.; Sanders, A. W.; Reich,
H. J. Magn. Resonan. Chem. 1998, 36, S118–S124. (c) Reich, H. J.; Goldenberg,
¨
W. S.; Gudmundsson, B. O.; Sanders, A. W.; Kulicke, K. J.; Simon, K.; Guzei,
I. A. J. Am. Chem. Soc. 2001, 123, 8067–8079. (d) Jantzi, K. L.; Puckett, C. L.;
Guzei, I. A.; Reich, H. J. J. Org. Chem. 2005, 70, 7520–7529. (e) Reich, H. J.;
Holladay, J. E.; Mason, J. D.; Sikorski, W. H. J. Am. Chem. Soc. 1995, 117,
12137–12150. (f) Reich, H. J.; Goldenberg, W. S.; Sanders, A. W.; Jantzi, K. L.;
Tzschucke, C. C. J. Am. Chem. Soc. 2003, 125, 3509–3521. (g) Reich, H. J.;
Borst, J. P.; Dykstra, R. R.; Green, D. P. J. Am. Chem. Soc. 1993, 115, 8728–
8741. (h) Reich, H. J.; Borst, J. P.; Dykstra, R. R. Tetrahedron 1994, 50, 5869–
5880. (i) Sikorski, W. H.; Reich, H. J. J. Am. Chem. Soc. 2001, 123, 6527–
6535. (j) Reich, H. J.; Dykstra, R. R. Angew. Chem., Int. Ed. Engl. 1993, 32,
1469–1470. (k) Reich, H. J.; Dykstra, R. R. J. Am. Chem. Soc. 1993, 115, 7041–
7042. (l) Reich, H. J.; Green, D. P.; Medina, M. A.; Goldenberg, W. S.;
¨
Gudmundsson, B. O.; Dykstra, R. R.; Phillips, N. H. J. Am. Chem. Soc. 1998,
120, 7201–7210. (m) Reich, H. J.; Holladay, J. E.; Walker, T. G.; Thompson,
J. L. J. Am. Chem. Soc. 1999, 121, 9769–9780. (n) Jones, A. C.; Sanders, A. W.;
Bevan, M. J.; Reich, H. J. J. Am. Chem. Soc. 2007, 129, 3492–3493. (o) Reich,
H. J.; Green, D. P.; Phillips, N. H. J. Am. Chem. Soc. 1991, 113, 1414–1416.
¨
(p) Reich, H. J.; Gudmundsson, B. O.; Green, D. P.; Bevan, M. J.; Reich, I. L.
HelV. Chim. Acta 2002, 85, 3748–3772. (q) Reich, H. J.; Phillips, N. H. Pure
Appl. Chem. 1987, 59, 1021–1026.
(5) (a) Reich, H. J.; Sikorski, W. H.; Thompson, J. L.; Sanders, A. W.; Jones,
A. C. Org. Lett. 2006, 8, 4003–4006. (b) Jones, A. C.; Sanders, A. W.; Sikorski,
W. H.; Jansen, K. L.; Reich, H. J. J. Am. Chem. Soc. 2008, 130, 6060–6061.
(6) (a) Bildmann, U. J.; Mueller, G. Organometallics 2001, 20, 1689–1691.
(b) Eiermann, M.; Hafner, K. J. Am. Chem. Soc. 1992, 114, 135. (c) Harder, S.;
Prosenc, M. H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1744. (d) Zaegel, F.;
Gallucci, J. C.; Meunier, P.; Gautheron, B.; Sivik, M. R.; Paquette, L. A. J. Am.
Chem. Soc. 1994, 116, 6466–6567.
(7) (a) Fraenkel, G.; Hallden-Abberton, M. P. J. Am. Chem. Soc. 1981, 103,
5657–5664. (b) Fraenkel, G.; Chow, A.; Winchester, W. R. J. Am. Chem. Soc.
1990, 112, 6190–6198. (c) For an insightful discussion of dynamic processes
involving C-Li multiplets in monomeric aryllithium reagents, see: Fraenkel, G.;
Subramanian, S.; Chow, A. J. Am. Chem. Soc. 1995, 117, 6300–6307. (d) For
many organolithium reagents, especially aggregated ones, quadrupolar broadening
is severe enough with 7Li (92.6% natural abundance) that C-Li coupling cannot
be resolved. The 6Li analogs show little or no quadrupolar broadening and thus
couplings are more easily seen: Fraenkel, G.; Fraenkel, A. M.; Geckle, M. J.;
Schloss, F. J. Am. Chem. Soc. 1979, 101, 4745–4747.
The selenide precursors to the phenyl and isopropyl analogs
2-Li and 3-Li were prepared as shown in Scheme 1. This route
could also serve to prepare 13C labeled materials since [13C]CH-
Br3 is commercially available, but we did not find it necessary
to do so.
Dynamic Properties of Tris(trimethylsilyl)methyl Deri-
vatives. Some tris(trimethylsilyl)methyl derivatives show ro-
tational DNMR effects in the temperature region of interest for
many of the experiments reported here. Specifically, the
trimethylsilyl 13C signals of 1-SePh decoalesced into a 2:1 ratio
of signals around -130 °C (Figure 1a). Although we initially
assigned this to restricted rotation around the C-SePh bond,
which would render one of the trimethylsilyl signals different
from the other two, we observed a very similar decoalescence
(8) Hoic, D. A.; Davis, W. M.; Fu, G. C. J. Am. Chem. Soc. 1995, 117,
8480–8481.
(9) (a) Romesberg, F. E.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.;
Collum, D. B. J. Am. Chem. Soc. 1991, 113, 5751–5757. (b) Romesberg, F. E.;
Bernstein, M. P.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B.
J. Am. Chem. Soc. 1993, 115, 3475–3483. (c) Galiano-Roth, A. S.; Collum, D. B.
J. Am. Chem. Soc. 1988, 110, 3546–3553. (d) Lucht, B. L.; Bernstein, M. P.;
Remenar, J. F.; Collum, D. B. J. Am. Chem. Soc. 1996, 118, 10707–10718.
(10) (a) Jackman, L. M.; Scarmoutzos, L. M.; Porter, W. J. Am. Chem. Soc.
1987, 109, 6524–6525. (b) Jackman, L. M.; Scarmoutzos, L. M.; Smith, B. D.;
Williard, P. G. J. Am. Chem. Soc. 1988, 110, 6058–6058.
(11) Gornitzka, H.; Stalke, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 693–
695.
(12) (a) Cambillau, C.; Bram, G.; Corset, J.; Riche, C. NouV. J. Chim. 1979,
3, 9–11. (b) Cambillau, C.; Ourevitch, M. J. Chem. Soc., Chem. Commun. 1981,
996–997. (c) Raban, M.; Haritos, D. P. J. Am. Chem. Soc. 1979, 101, 5178–
5182. (d) Teixidor, F.; Llobet, A.; Casabo´, J.; Solans, X.; Font-Altaba, M.; Aguilo´,
M. Inorg. Chem. 1985, 24, 2315–2317.
(13) (a) Bauer, W.; Seebach, D. HelV. Chim. Acta 1984, 67, 1972–1988. (b)
Seebach, D.; Hassig, R.; Gabriel, J. HelV. Chim. Acta 1983, 66, 308–337. (c)
Seebach, D.; Siegel, H.; Gabriel, J.; Ha¨ssig, R. HelV. Chim. Acta, 1980, 63,
2046–2053.
(14) (a) Merker, R. L.; Scott, M. J. J. Organomet. Chem. 1965, 4, 98–100.
(b) Guijarro, A.; Yus, M. T etrahedron 1996, 52, 1797–1810.
720 J. Org. Chem. Vol. 74, No. 2, 2009