bromide) assay10,11,24 following treatment of the normal human
skin fibroblast cell line, GM00637, with 2 and MMC in parallel.
MMC acts as a positive control for cytotoxicity in the MTT
assay. Benzimidazolequinone 2 was found to be marginally more
cytotoxic than MMC, with IC50 = 0.5 mM for 2 and 0.8 mM for
MMC (Fig. 2).
and Epoxides in Organic Synthesis, ed. A. K. Yudin, Wiley-
VCH Verlag GmbH
pp. 399–442.
4 M. Tomasz, A. K. Chawla and R. Lipman, Biochemistry, 1988, 27,
3182.
5 E. B. Skibo, I. Islam, W. G. Schulz, R. Zhou, L. Bess and R.
Boruah, Synlett, 1996, 297; A. Suleman and E. B. Skibo, J. Med.
Chem., 2002, 45, 1211; K. Fahey and F. Aldabbagh, Tetrahedron
Lett., 2008, 49, 5235.
&
Co. KGaA, Weinheim, 2006,
FA is a rare human genetic disease, characterised by an
increased incidence of cancer in early adulthood. FA cells are
characterised by a hypersensitivity to agents that induce cross-
links in DNA, in particular MMC.13 FA cells are mutant in
one of a number of genes encoding proteins in the FANC
multiprotein complex, which plays a key role in processing
MMC-induced DNA damage.13 The human FA fibroblast cell
line (PD20i) that lacks the FANCD2 protein and, as a control,
an isogenic cell line (PD20:RV) expressing wild-type
FANCD2 protein from an inserted transgene14 were treated
with benzimidazolequinone 2 and MMC in parallel (Fig. 3).
MMC and 2 exhibited cytotoxicity in the nanomolar range
(10À9 M) towards the FA (PD20i) cell line, which lacks the
FANCD2 protein. PD20:RV cells, which express FANCD2,
were found to be less sensitive to both MMC and 2 (Fig. 3).
The observations that MMC-sensitive FANCD2-deficient
cells are also more sensitive to 2, and that expression of wild-
type FANCD2 protein partially corrects the cellular sensitivity
to both MMC and 2, provide evidence that DNA damage
induction and the FANC pathway are important in the
cytotoxicity of 2. As there is only one position for DNA-
alkylation (at the aziridine), the formation of crosslinks is not
possible with 2; this indicates that other forms of DNA
damage may be involved in this response.
6 C. M. Ahn, S. K. Kim and J. L. Han, Arch. Pharmacal Res., 1998,
21, 599.
7 I. Antonini, F. Claudi, G. Cristalli, P. Franchetti, M. Grifantini
and S. Martelli, J. Med. Chem., 1988, 31, 260.
8 W. G. Schulz and E. B. Skibo, J. Med. Chem., 2000, 43, 629;
A. K. Singh and J. W. Lown, Anti-Cancer Drug Des., 2000, 15, 265;
C. Flader, J. Liu and R. F. Borch, J. Med. Chem., 2000, 43, 3157;
L. Garuti, M. Roberti, M. Malagoli, T. Rossi and M. Castelli,
´
Bioorg. Med. Chem. Lett., 2000, 10, 2193; F. Alvarez, A. Gherardi,
P. Nebois, M.-E. Sarciron, A.-F. Petavy and N. Walchshofer,
´
Bioorg. Med. Chem. Lett., 2002, 12, 977; K.-H. Chung,
S.-Y. Hong, H.-J. You, R.-E. Park and C.-K. Ryu, Bioorg. Med.
Chem. Lett., 2006, 14, 5795; J. J. Newsome, M. A. Colucci,
M. Hassani, H. D. Beall and C. J. Moody, Org. Biomol. Chem.,
2007, 5, 3665.
9 J. O’Shaughnessy, D. Cunningham, P. Kavanagh, D. Leech,
P. McArdle and F. Aldabbagh, Synlett, 2004, 2382; J. O’Shaughnessy
and F. Aldabbagh, Synthesis, 2005, 1069.
10 M. Lynch, S. Hehir, P. Kavanagh, D. Leech, J. O’Shaughnessy,
M. P. Carty and F. Aldabbagh, Chem.–Eur. J., 2007, 13, 3218.
11 S. Hehir, L. O’Donovan, M. P. Carty and F. Aldabbagh,
Tetrahedron, 2008, 64, 4196.
12 C. J. Moody, C. L. Norton, A. M. Z. Slawin and S. Taylor, Anti-
Cancer Drug Des., 1998, 13, 611.
13 A. D. Auerbach and S. R. Wolman, Nature, 1976, 261, 494; M. D.
Tischkowitz and S. V. Hodgson, J. Med. Genet., 2003, 40, 1;
L. J. Niedernhofer, A. S. Lalai and J. H. J. Hoeijmakers, Cell
(Cambridge, MA, U. S.), 2005, 123, 1191; T. Taniguchi and A. D.
D’Andrea, Blood, 2006, 107, 4223.
14 X. Wang, P. R. Andreassen and A. D. D’Andrea, Mol. Cell. Biol.,
2004, 24, 5850.
15 J. E. Baldwin, A. C. Spivey, C. J. Schofield and J. B. Sweeney,
Tetrahedron, 1993, 49, 6309.
The authors thank the Irish Research Council for Science,
Engineering and Technology: funded by the National Develop-
ment Plan for an Embark Scholar Award for Liz O’Donovan.
This publication emanated from research conducted with
financial support from Science Foundation Ireland (07/RFP/
CHEF227) and the Health Research Board.
16 E. Kuyl-Yeheskiely, M. Lodder, G. A. van der Marel and J. H. van
Boom, Tetrahedron Lett., 1992, 33, 3013.
17 I. Utsunomiya, M. Fuji, T. Sato and M. Natsume, Chem. Pharm.
Bull., 1993, 41, 854.
18 G. A. Molander and P. J. Stengel, Tetrahedron, 1997, 53, 8887.
19 L. Weinberger and A. R. Day, J. Org. Chem., 1959, 24, 1451.
20 H. Tohma, H. Morioka, Y. Harayama, M. Hashizume and Y.
Kita, Tetrahedron Lett., 2001, 42, 6899.
Notes and references
1 For reviews on bioreductive alkylating agents, see: S. R. Rajski and
R. M. Williams, Chem. Rev., 1998, 98, 2723; S. E. Wolkenberg and
D. L. Boger, Chem. Rev., 2002, 102, 2477; M. Jaffar, N.
Abou-Zeid, L. Bai, I. Mrema, I. Robinson, R. Tanner and I. J.
Stratford, Curr. Drug Delivery, 2004, 1, 345.
2 M. A. Colucci, C. J. Moody and G. D. Couch, Org. Biomol. Chem.,
2008, 6, 637.
3 For recent reviews on mitomycins, see: W. A. Remers, in
Anticancer Agents from Natural Products, ed. G. M. Cragg, D.
G. I. Kingston and D. J. Newman, Taylor & Francis, Boca Raton,
FL, USA, 2005, ch. 23, pp. 475–497; P. A. S. Lowden, in Aziridines
21 D. W. Kim, H. Y. Choi, K.-J. Lee and D. Y. Chi, Org. Lett., 2001,
3, 445.
22 Isomers may be tentatively assigned using NMR spectroscopy:
5 - bromo-N-[(1-tritylaziridin-(2S)-yl)methyl]-1H-benzimidazole- 4,
7-dione 6: 1H NMR: d 7.10, Ar-6-H; 13C NMR: d 137.1, Ar-6-CH;
6-bromo-N-[(1-tritylaziridin-(2S)-yl)methyl]-1H-benzimidazole-4,7-
dione 7: 1H NMR: d 7.16–7.26 (within), Ar-5-H; 13C NMR: d 137.7,
Ar-5-CH.
23 J. Song, S. Jeong and S.-W. Ham, J. Korean Chem. Soc., 2002, 46,
402.
24 T. Mosmann, J. Immunol. Methods, 1983, 65, 55.
ꢀc
This journal is The Royal Society of Chemistry 2008
5594 | Chem. Commun., 2008, 5592–5594