Scheme 1
Figure 1. Iminocarbene ligands and complexes previously reported.
very high cis-selectivities with tert-butyl diazoace-
tate.
Among the Rh-based catalysts that are reported to be
useful for cyclopropanation reactions, there are a few that
give good cis-selectivities but rather low yields.29-33 We
here report the synthesis of a novel Rh(I) complex 5 with a
chelating N-heterocyclic iminocarbene ligand and the use
of this complex in cyclopropanation reactions.
Arduengo’s report on stable N-heterocyclic carbenes
(NHC’s)34,35 triggered the use of such species as ligands for
organometallic complexes. NHC-metal complexes are ex-
cellent catalysts for a wide range of chemical transforma-
tions.36-38 We have previously reported the synthesis of five-
and six-membered ring chelate complexes of Pd and Pt with
N-heterocyclic iminocarbene ligands of the types shown in
Figure 1.39-41
The related Rh(I) complex 5 was synthesized as shown
in Scheme 1. Iminoimidazolium salt 4 was synthesized in
good yields by the previously reported method.42
(13) Alexander, K.; Cook, S.; Gibson, C. L. Tetrahedron Lett. 2000,
The new Rh(I) complex 5 was obtained by reacting the
imidazolium salt 4 with commercially available Rh(acac)-
(CO)2, as described by Gade and co-workers for a related
NHC-oxazole Rh(I) complex.43 The 13C NMR spectrum of
5 exhibited a characteristic doublet for the carbene carbon
at δ 185.9 with J(103Rh-13C) ) 58 Hz. The IR νCdN
absorption of the imine was lowered by 54 cm-1 compared
to that of 4. These data strongly suggest that the iminocarbene
ligand has formed a κ2(C,N) chelate at Rh. This was verified
by an X-ray structure analysis of 5 (Figure 2).
Some Au and Cu complexes with NHC ligands show good
reactivity in cyclopropanation reactions.44,45 In view of the
fact that certain Rh complexes also catalyze such reac-
tions,29-33 we decided to subject our novel Rh(I) complex
5 to cyclopropanation conditions.
41, 7135–7138
.
(14) Uchida, T.; Irie, R.; Katsuki, T. Synlett 1999, 1163–1165
(15) Uchida, T.; Irie, R.; Katsuki, T. Synlett 1999, 1793–1795
(16) Casey, C. P.; Polichnowski, S. W.; Shusterman, A. J.; Jones, C. R.
.
.
J. Am. Chem. Soc. 1979, 101, 7282–7292
.
(17) Hoang, V. D. M.; Reddy, P. A. N.; Kim, T.-J. Tetrahedron Lett.
48, 8014-8017.
(18) Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron 2000, 56, 3501–3509
.
.
(19) Lu¨ning, U.; Fahrenkrug, F. Eur. J. Org. Chem. 2006, 91, 6–923
(20) D´ıaz-Requejo, M. M.; Caballero, A.; Belderrain, T. R.; Nicasio,
M. C.; Trofimenko, S.; Pe´rez, P. J. J. Am. Chem. Soc. 2002, 124, 978–983
.
(21) Bachmann, S.; Mezzetti, A. HelV. Chim. Acta 2001, 84, 3063–
3074
.
(22) Bonaccorsi, C.; Mezzetti, A. Organometallics 2005, 24, 4953–4960
.
(23) Bachmann, S.; Furler, M.; Mezzetti, A. Organometallics 2001, 20,
2102–2108
.
(24) Bonaccorsi, C.; Santoro, F.; Gischig, S.; Mezzetti, A. Organome-
tallics 2006, 25, 2002–2010
(25) Bonaccorsi, C.; Bachmann, S.; Mezzetti, A. Tetrahedron: Asym-
metry 2003, 14, 845–854
(26) Uchida, T.; Katsuki, T. Synthesis 2006, 1715–1723
(27) Shitama, H.; Katsuki, T. Chem.-Eur. J. 2007, 13, 4849–4858
(28) Kanchiku, S.; Suematsu, H.; Matsumoto, K.; Uchida, T.; Katsuki,
.
.
.
.
The reaction between ethyl diazoacetate (EDA) and styrene
was chosen as the initial test system (Table 1). The EDA
was added in one portion without sign of carbene dimeriza-
tion under cyclopropanation conditions. When 5 was mixed
with EDA and styrene in dichloromethane, essentially no
reaction was observed. Activation of 5 with silver triflate
T. Angew. Chem., Int. Ed. 2007, 46, 3889–3891
.
(29) Eagle, C. T.; Farrar, D.; Holder, G. N.; Hatley, M. L.; Humphrey,
S. L.; Olson, E. V.; Quintos, M.; Sadighi, J.; Wideman, T. Tetrahedron
Lett. 2003, 44, 2593–2595
(30) Callot, H. J.; Piechocki, C. Tetrahedron Lett. 1980, 21, 3489–3492
(31) Krumper, J. R.; Gerisch, M.; Suh, J. M.; Bergman, R. G.; Tilley,
T. D. J. Org. Chem. 2003, 68, 9705–9710
.
.
.
´
(32) Estevan, F.; Lloret, J.; Sanau´, M.; Ubeda, M. A. Organometallics
2006, 25, 4977–4984
(33) Lloret, J.; Estevan, F.; Bieger, K.; Villanueva, C.; Ubeda, M. A.
Organometallics 2007, 26, 4145–4151
(34) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1991, 113, 361–363
(35) Arduengo, A. J., III Acc. Chem. Res. 1999, 32, 913–921
(36) Weskamp, T.; Bo¨hm, V. P. W.; Herrmann, W. A. J. Organomet.
Chem. 2000, 600, 12–22
(37) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309
(38) Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem.,
Int. Ed. 2007, 46, 2768–2813
(39) Frøseth, M.; Dhindsa, A.; Røise, H.; Tilset, M. Dalton Trans. 2003,
4516–4524
.
(40) Frøseth, M.; Netland, K. A.; To¨rnroos, K. W.; Dhindsa, A.; Tilset,
M. Dalton Trans. 2005, 1664–1674.
´
.
(41) Frøseth, M.; Netland, K. A.; Rømming, C.; Tilset, M. J. Organomet.
Chem. 2005, 690, 6125–6132.
.
(42) Netland, K. A.; Krivokapic, A.; Schro¨der, M.; Boldt, K.; Lundvall,
F.; Tilset, M. J. Organomet. Chem. 2008, 693, 3703–3710.
(43) Poyatos, M.; Maisse-Franc¸ois, A.; Bellemin-Laponnaz, S.; Gade,
L. H. Organometallics 2006, 25, 2634–2641.
.
.
.
(44) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.;
Kaur, H.; D´ıaz-Requejo, M. M.; Pe´rez, P. J. J. Am. Chem. Soc. 2004, 126,
.
10846–10847
(45) D´ıaz-Requejo, M. M.; Pe´rez, P. J. J. Organomet. Chem. 2005, 690,
5441–5450
.
.
.
548
Org. Lett., Vol. 11, No. 3, 2009