(C51H43BF15PPtS, 1209.78 g molꢂ1): a = 21.679(2), b = 18.6294(17),
c = 23.275(2) A, V = 9400.0(15) A3, space group = Pbca (orthor-
hombic), Z = 8, independent reflections = 10 253 (Rint = 0.1001),
GOF = 1.060, R1 = 0.0379 (Fo2 4 2s(Fo2)), wR2 = 0.0892 (all data).
Selected crystal data for 3 (C50H36BF20PPtS, 1285.72 g molꢂ1): a =
17.6907(18), b = 17.3368(18), c = 17.7636(18) A, b =117.9280(10)1,
V = 4813.6(9) A3, space group = P21/c (monoclinic), Z = 4,
independent reflections = 11 034 (Rint = 0.0431), GOF = 1.058,
lengthening of the Pt–C linkage is noted for both complexes on
going from Pt–CH2 to Pt–Cipso to Pt–Cortho (Table 1), in keeping
with structural trends commonly observed in LnM(Z3-benzyl)
complexes.12,14 However, while the first two of these distances
are statistically equivalent in 2ꢀB(C6F5)3 and 3, the elongation of
the Pt–Cortho distance in 3 (2.566(4) A) is significantly more
pronounced than in 2ꢀB(C6F5)3 (2.354(5) A). While the potential
influence of crystal packing as a source of such structural differ-
ences cannot be discounted, it is worthy of mention that the
2
R1 = 0.0367 (Fo 4 2s(Fo2)), wR2 = 0.0934 (all data).
1 Such zwitterions are distinct from those featuring a formally
anionic metal fragment coordinated to a cationic ancillary ligand:
R. Chauvin, Eur. J. Inorg. Chem., 2000, 577.
1
observed structural trend also matches the J(PPt) values mea-
sured for 2 (5012 Hz), 2ꢀB(C6F5)3 (5264 Hz), and 3 (5317 Hz), with
the increasing 1J(PPt) value signaling a progressively weaker
interaction between Pt and the Z2-(C11QC12) moiety that occu-
pies a position trans to phosphorus in 2ꢀB(C6F5)3 and 3 (and
presumably 2).10 When considered collectively, the solid state
structural variations noted within the Z3-benzyl fragments of
2ꢀB(C6F5)3 and 3, as well as the differing solution dynamic
behavior observed for 2, 2ꢀB(C6F5)3, and 3, may presage divergent
reactivity for these complexes, attributable in part to the unique
electronic characteristics of the ancillary ligand backbone.
In summary, we have demonstrated that 1/3-PiPr2-2-StBu-
indene functions as a versatile new ligand precursor in the
synthesis of cationic [(k2-P,S)Pt(Z3-benzyl)]+Xꢂ species (3), as
well as analogous zwitterionic (charge-neutral) complexes in which
the formally cationic metal fragment is counterbalanced by an
uncoordinated indenide (2) or borate (2ꢀB(C6F5)3) fragment within
the ancillary ligand backbone. In addition to offering a new and
complementary approach for the assembly of structurally related
cationic and zwitterionic group 10 complexes, the convenience of
employing a single ligand precursor in these syntheses may offer
advantages over alternative strategies that require the preparation
of distinct ligands for supporting cations and zwitterions. Having
established the synthetic feasibility of heterobidentate indenide
ligation in group 10 chemistry, we have initiated a comparative
reactivity survey involving 2, 2ꢀB(C6F5)3, and 3, in an effort to
document the influence of the indenide, indenylborate, and indene
ligand backbone (respectively) in tuning the reactivity of structu-
rally related group 10 metal complexes. The results of these and
related investigations will be reported in due course.
2 For selected recent examples, see: (a) B. M. Boardman, J. M.
Valderrama, F. Munoz, G. Wu, G. C. Bazan and R. Rojas,
Organometallics, 2008, 27, 1671; (b) J. Cho, G. P. A. Yap and C.
G. Riordan, Inorg. Chem., 2007, 46, 11308; (c) Y. Chen, C. Sui-
Seng and D. Zargarian, Angew. Chem., Int. Ed., 2005, 44, 7721; (d)
Y. Chen, G. Wu and G. C. Bazan, Angew. Chem., Int. Ed., 2005,
44, 1108; (e) H. Y. Kwon, S. Y. Lee, B. Y. Lee, D. M. Shin and Y.
K. Chung, Dalton Trans., 2004, 921; (f) C. B. Shim, Y. H. Kim, B.
Y. Lee, Y. Dong and H. Yun, Organometallics, 2003, 22, 4272.
3 (a) R. van de Coevering, M. Kuil, A. P. Alfers, T. Visser, M. Lutz,
A. L. Spek, R. J. M. Klein Gebbink and G. van Koten, Organo-
metallics, 2005, 24, 6147; (b) C. C. Lu and J. C. Peters, J. Am.
Chem. Soc., 2004, 126, 15818; (c) C. C. Lu and J. C. Peters, J. Am.
Chem. Soc., 2002, 124, 5272; (d) R. van de Coevering, M. Kuil, R.
J. M. Klein Gebbink and G. van Koten, Chem. Commun., 2002,
1636.
4 (a) E. Khaskin, P. Y. Zavalij and A. N. Vedernikov, Angew.
Chem., Int. Ed., 2007, 46, 6309; (b) C. M. Thomas and J. C. Peters,
Organometallics, 2005, 24, 5858; (c) J. C. Thomas and J. C. Peters,
J. Am. Chem. Soc., 2003, 125, 8870; (d) J. C. Thomas and J. C.
Peters, J. Am. Chem. Soc., 2001, 123, 5100; (e) T. Marx, L.
Wesemann and S. Dehnen, Organometallics, 2000, 19, 4653.
5 (a) R. J. Lundgren, M. A. Rankin, R. McDonald and M. Stradiotto,
Organometallics, 2008, 27, 254; (b) R. J. Lundgren, M. A. Rankin,
R. McDonald, G. Schatte and M. Stradiotto, Angew. Chem., Int.
Ed., 2007, 46, 4732; (c) J. Cipot, R. McDonald, M. J. Ferguson,
G. Schatte and M. Stradiotto, Organometallics, 2007, 26, 594;
(d) M. A. Rankin, R. McDonald, M. J. Ferguson and M. Stradiotto,
Organometallics, 2005, 24, 4981.
6 Complexes of donor-substituted indenide ligands are described as
zwitterionic in that they lack conventional resonance structures that
delocalize the indenide anionic charge onto the pendant donor atoms.
7 N. Oberbeckmann-Winter, P. Braunstein and R. Welter, Organo-
metallics, 2004, 23, 6311.
8 Similar structural trends have been observed in (k2-P,S)PtX2 (X =
Ph or Cl) complexes: (a) R. Malacea, L. Routaboul, E. Manoury,
J.-C. Daran and R. Poli, J. Organomet. Chem., 2008, 693, 1469; (b)
R. Romeo, L. Monsu’ Scolaro, M. R. Plutino, A. Romeo, F.
Nicolo’ and A. Del Zotto, Eur. J. Inorg. Chem., 2002, 629.
9 Complex dynamic behavior resulting in significant NMR line-
broadening has been noted in (k2-P,S)Pt(Cl)(Z1-allyl), [(k2-P,S)Pt-
(Z3-allyl)]+Xꢂ, and related complexes, see: (a) E. Hauptman,
P. J. Fagan and W. Marshall, Organometallics, 1999, 18, 2061; (b)
M. Bressan and A. Morvillo, J. Organomet. Chem., 1986, 304, 267.
10 For discussions of Pt(benzyl) dynamics and the use of 1J(PPt)
values in related bonding analyses, see: L. E. Crascall, S. A. Litster,
A. D. Redhouse and J. L. Spencer, J. Organomet. Chem., 1990,
394, C35, and references cited therein.
We thank the Natural Sciences and Engineering Research
Council of Canada (including a Discovery Grant for MS and a
Canada Graduate Scholarship for KDH), and Dalhousie
University for their generous support of this work. We also
thank Drs Michael Lumsden and Katherine Robertson
(Atlantic Region Magnetic Resonance Center, Dalhousie)
for assistance in the acquisition of NMR data.
Notes and references
11 K. Izod, Coord. Chem. Rev., 2002, 227, 153.
12 Crystallographically characterized LnPt(Z3-benzyl) complexes are
rare: (a) A. Sonoda, P. M. Bailey and P. M. Maitlis, J. Chem. Soc.,
Dalton Trans., 1979, 346; (b) ref. 10 herein.
z Crystallographic data have been deposited for 1 (CCDC 687093),
2ꢀDMAP (CCDC 687090), 2ꢀB(C6F5)3(C7H8) (CCDC 687091), and 3
(CCDC 687092).w Selected crystal data for 1 (C26H36ClPPtS, 642.12 g
molꢂ1): a = 13.1479(3), b = 12.5326(4), c = 15.8100(5) A, b =
98.1364(17)1, V = 2578.91(13) A3, space group = P21/c (monoclinic),
Z = 4, independent reflections = 5271 (Rint = 0.0389), GOF = 1.081,
R1 = 0.0335 (Fo2 4 2s(Fo2)), wR2 = 0.0810 (all data). Selected crystal
data for 2ꢀDMAP (C33H45N2PPtS, 727.83 g molꢂ1): a = 10.6807(9), b =
14.1937(11), c = 20.6273(17) A, b =97.7681(9)1, V = 3098.4(4) A3,
space group = P21/c (monoclinic), Z = 4, independent reflections =
13 For [Z5-Cp0B(C6F5)3]ꢂ complexes of groups 4 and 6, see: (a) P. J.
Shapiro, P.-J. Sinnema, P. Perrotin, P. H. M. Budzelaar, H. Weihe,
B. Twamley, R. A. Zehnder and J. J. Nairn, Chem.–Eur. J., 2007,
13, 6212; (b) M. Bochmann, S. J. Lancaster and O. B. Robinson,
J. Chem. Soc., Chem. Commun., 1995, 2081.
14 For a selection of crystallographically characterized LnM(Z3-benzyl)
complexes (M a Pt), see: (a) J.-C. Wasilke, Z. J. A. Komon, X. Bu
and G. C. Bazan, Organometallics, 2004, 23, 4174; (b) T.-F. Wang, C.-
C. Hwu, C.-W. Tsai and Y.-S. Wen, J. Chem. Soc., Dalton Trans.,
1998, 2091, and references cited therein; (c) ref. 2e herein.
7060 (Rint = 0.0264), GOF = 1.059, R1 = 0.0235 (Fo 4 2s(Fo2)),
wR2 = 0.0573 (all data). Selected crystal data for 2ꢀB(C6F5)3(C7H8)
2
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5645–5647 | 5647