Axially Chiral ꢀ,ꢀ′-Bisporphyrins
A R T I C L E S
Table 2. Synthesis of the New ꢀ-Boronic Acid Esters 3a-k of
Metalated and Nonmetalated TAPsa
The Ir-catalyzed borylation procedure starting from a bromine-
free porphyrin, i.e., by direct C-H activation as elaborated by
Hata et al.,41 was not applicable to the synthesis of ꢀ-borylated
TAPs either, as it is known to be limited to the preparation of
porphyrin boronic acid esters having a free meso position
adjacent to the center of the transmetalation.41 Reaction of
brominated TPP (1a) under the conditions described by Deng
et al., with DMF as the solvent,27 resulted in an almost exclusive
formation of the undesired Heck product42 2 (Table 1, entry
3), showing the necessity to establish a basically new access to
the desired porphyrin derivatives bearing four meso-aryl sub-
stituents.36 The use of toluene as a less polar solvent finally led
to the formation of the desired product 3a, which was isolated
in up to 55% yield (Table 1, entries 4 and 5). Nevertheless, the
purification of the boronic acid ester was still cumbersome due
to the presence of undesired byproductssthe hydrodebrominated
b
product (yield [%] )
entry
reactant
Ar
M
t [h]
1
2
3
4
5
6
7
8
1a
1b
1c
1d
1e
1f
1g
1h
1i
phenyl
4-tolyl
4-chlorophenyl
4-methoxyphenyl
phenyl
4-tolyl
phenyl
4-tolyl
phenyl
2H
2H
2H
2H
Zn
Zn
Ni
3
3
2
3
3
3
3
3
4
4
4
3a (70)
3b (65)
3c (56)
3d (64)
3e (62)
3f (67)
3g (58)
3h (60)
3i (53)
3j (50)
3k (61)
Ni
(20) (a) Kim, D.; Osuka, A. Acc. Chem. Res. 2004, 37, 735–745. (b) Ikeue,
T.; Furukawa, K.; Hata, H.; Aratani, N.; Shinokubo, H.; Kato, T.;
Osuka, A. Angew. Chem., Int. Ed. 2005, 44, 6899–6901. (c) Ahn, T. K.;
Kim, K. S.; Kim, D. Y.; Noh, S. B.; Aratani, N.; Ikeda, C.; Osuka,
A.; Kim, D. J. Am. Chem. Soc. 2006, 128, 1700–1704.
(21) Tsuda, A.; Furuta, H.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 10304–
10321.
9
10
11
Cu
Cu
Pd
1j
1k
4-tolyl
phenyl
a Reactions were carried out under Ar with the respective
bromoporphyrin 1 (1.0 equiv), bis(pinacolato)diboron (2.5 equiv), KOAc
(10 equiv), and Pd catalyst (20 mol %). b Isolated yields.
(22) (a) Susumu, K.; Shimidzu, T.; Tanaka, K.; Segawa, H. Tetrahedron
Lett. 1996, 37, 8399–8402. (b) Osuka, A.; Shimidzu, H. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 135–137. (c) Senge, M. O.; Feng, X.
Tetrahedron Lett. 1999, 40, 4165–4168. (d) Senge, M. O.; Feng, X.
J. Chem. Soc., Perkin Trans. 1 2000, 3615–3621. (e) Aratani, N.;
Osuka, A. Org. Lett. 2001, 3, 4213–4216. (f) Hiroto, S.; Osuka, A. J.
Org. Chem. 2005, 70, 4054–4058. (g) Jin, L.-M.; Chen, L.; Yin, J.-J.;
Guo, C.-C.; Chen, Q.-Y. Eur. J. Org. Chem. 2005, 3994–4001.
(23) Khoury, R. C.; Jaquinod, L.; Smith, K. M. Chem. Commun. 1997,
1057–1058.
parent compound (TPP) and the likewise formed ring-annulated
product 2swhich substantially limited the isolated yields of 3a.
Replacement of K2CO3 by KOAc as a more nucleophilic base
increased the isolated yield up to 65% (Table 1, entry 6),
presumably due to an additional activation of the boron-
transferring agent by intermediate formation of a quaternary
boronate anion.43 Using toluene/H2O as a two-phase solvent
system finally led to a further improvement of the yield and to
a significant reduction of the reaction time, which was again
shortened by microwave irradiation or by the additional use of
18-crown-6 as a phase-transfer catalyst (Table 1, entries 5, 7,
8, and 9).44 The borylation also succeeded by using a far smaller
catalyst loading of 5 mol % (Table 1, entry 10), giving identical
yields but requiring significantly extended reaction times.
Using these optimized Pd-catalyzed transmetalation condi-
tions, several as-yet-unknown air- and water-stable porphyrin
boronic acid esters 3a-k were synthesized from the respective
ꢀ-brominated tetraarylporphyrins 1a-k in good yields and short
reaction times (Table 2). Electron-withdrawing chlorine sub-
stituents (Table 2, entry 3) facilitated the competing hydrode-
bromination at the catalytic Pd center, presumably by an
oxidative addition of hydridic boron species, followed by
transmetalation and reductive elimination.45 This would explain
the slightly decreased yields as compared to the other substrates
(24) Senge, M. O.; Ro¨ꢀler, B.; von Gersdorff, J.; Scha¨fer, A.; Kurreck, H.
Tetrahedron Lett. 2004, 45, 3363–3367.
(25) Ogawa, T.; Nishimoto, Y.; Yoshida, N.; Ono, N.; Osuka, A. Angew.
Chem., Int. Ed. 1999, 38, 176–179.
(26) For ꢀ,ꢀ′-bisporphyrins without meso substituents that might be axially
chiral but have not been stereochemically characterized, see refs 27
and 28.
(27) Deng, Y.; Chang, C. K.; Nocera, D. G. Angew. Chem., Int. Ed. 2000,
39, 1066–1068.
(28) (a) Paine III, J. B.; Dolphin, D. Can. J. Chem. 1978, 56, 1710–1712.
(b) Uno, H.; Kitawaki, Y.; Ono, N. Chem. Commun. 2002, 116–117.
(29) For a directly ꢀ,ꢀ′-linked, yet N-confused bisporphyrin, which has
been stereochemically characterized more recently, see: (a) Siczek,
M.; Chmielewski, P. J. Angew. Chem., Int. Ed. 2007, 46, 7432–7436.
For its synthesis, see: (b) Chmielewski, P. J. Angew. Chem., Int. Ed.
2004, 43, 5655–5658.
(30) Nakamura, Y.; Hwang, I.; Aratani, N.; Ahn, T. K.; Ko, D. M.; Takagi,
A.; Kawai, T.; Matsumoto, T.; Kim, D.; Osuka, A. J. Am. Chem. Soc.
2005, 127, 236–246.
(31) Yoshida, N.; Osuka, A. Tetrahedron Lett. 2000, 41, 9287–9291.
(32) (a) Vicente, M. G. H.; Jaquinod, L.; Smith, K. M. Chem. Commun.
1999, 1771–1782. (b) Burrell, A. K.; Officer, D. L.; Plieger, P. G.;
Reid, D. C. W. Chem. ReV. 2001, 101, 2751–2796.
(33) Pescitelli, G.; Gabriel, S.; Wang, Y.; Fleischhauer, J.; Woody, R. W.;
Berova, N. J. Am. Chem. Soc. 2003, 125, 7613–7628.
(34) (a) van Amerongen, H.; Valkunas, L.; van Grondelle, R. Photosynthetic
Excitons; World Scientific: Singapore, New Jersey, London, Hong
Kong, 2000. (b) Blankenship, R. E. Molecular Mechanisms of
Photosynthesis; Blackwell Science: Oxford, 2002.
(38) Hyslop, A. G.; Kellet, M. A.; Iovine, P. M.; Therien, M. J. J. Am.
Chem. Soc. 1998, 120, 12676–12677. (a) In our hands these conditions
published for the synthesis of meso-boronic acid esters of TAPs by
Hyslop et al. did give ꢀ-borylated TAPs starting from the respective
ꢀ-brominated porphyrins, too, but in very low yields (e.g., 25-30%
for 3a as compared to 70% with our optimized procedure, Table 1,
entries 1 and 8).
(35) For recent reviews on artificial photosynthetic model systems derived
from porphyrins, see: (a) Guldi, D. M. Chem. Soc. ReV. 2002, 31,
22–36. (b) Kobuke, Y.; Ogawa, K. Bull. Chem. Soc. Jpn. 2003, 76,
689–708. (c) Imahori, H. J. Phys. Chem. B 2004, 108, 6130–6143.
(d) Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79, 177–195. (e) Satake,
A.; Kobuke, Y. Org. Biomol. Chem. 2007, 5, 1679–1691. (f) Hori,
T.; Nakamura, Y.; Aratani, N.; Osuka, A. J. Organomet. Chem. 2007,
692, 148–155.
(39) For some recent synthetic applications of this procedure,38 see: (a)
Tsuda, A.; Nakamura, T.; Sakamoto, S.; Yamaguchi, K.; Osuka, A.
Angew. Chem., Int. Ed. 2002, 41, 2817–2820. (b) Kang, Y. K.;
Rubtsov, I. V.; Iovine, P. M.; Chen, J.; Therien, M. J. J. Am. Chem.
Soc. 2002, 124, 8275–8279. (c) Chng, L. L.; Chang, C. J.; Nocera,
D. G. J. Org. Chem. 2003, 68, 4075–4078. (d) Cheng, F.; Zhang, S.;
Adronov, A.; Echegoyen, L.; Diederich, F. Chem. Eur. J. 2006, 12,
6062–6070.
(36) For preliminary results on two first representatives, see: Bringmann,
G.; Ru¨denauer, S.; Go¨tz, D. C. G.; Gulder, T. A. M.; Reichert, M.
Org. Lett. 2006, 8, 4743–4746.
(37) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483. (b)
Suzuki, A. Proc. Jpn. Acad. 2004, 80, 359–371.
(40) Zhang, C.; Suslick, K. S. J. Porphyrins Phthalocyanines 2005, 9, 659–
666.
9
J. AM. CHEM. SOC. VOL. 130, NO. 52, 2008 17815