10.1002/chem.201804529
Chemistry - A European Journal
COMMUNICATION
Scheme 5. Regioselective cyclization experiments.
Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2014, 53, 3854-
3858; Angew. Chem. 2014, 126, 3934-3939.
[3]
[4]
For review, see: a) p. Wessig, G. Müller, Chem. Rev. 2008, 108, 2051-
2063; b) W. Li, L. Zhou, J. Zhang, Chem. Eur. J. 2016, 22, 1558-1571.
For reviews on gold(I)-catalyzed alkyne activation: a) R. Dorel, A. M.
Echavarren, Chem. Rev. 2015, 115, 9028-9072; b) A. S. K. Hashmi,
Chem. Rev. 2007, 107, 3180-3211; c) D. J. Gorin, B. D. Sherry, F. D.
Toste, Chem. Rev. 2008, 108, 3351-3378; d) A. M. Asiri, A. S. K.
Hashmi, Chem. Soc. Rev. 2016, 45, 4471-4503; e) A. Fürstner, P. W.
Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; Angew. Chem.
2007, 119, 3478-3519.
In conclusion, we have developed a dual gold-catalyzed
tetradehydro-Diels-Alder reaction. Nitrogen-containing aromatic
heterocycles including indolines and carbazoles are prepared
highly efficiently by catalysts system IPrAuNTf2/DIPEA. This
reaction does not require diluted reaction concentration and
radical prohibitors. Experiments support a mechanism involving
gold vinylidene species, which undergoes a 6π electrocyclization
followed with 1,2-hydrogen shift.
[5]
[6]
For recent work on gold catalyzed Tetradehydro-Diels-Alder reactions
with ynamide: a) W. Xu, G. Wang, X. Xie, Y. Liu, Org. Lett. 2018, 20,
3273-3277. During the preparation of this manuscript, Gagosz and co-
workers reported a closed related work: b) 10.1002/anie.201807136. In
Acknowledgements ((optional))
this work, [(RuPhos)Au]NTf2 was used as the catalyst and
a
mechanism involving Friedel-Craft alkylation of gold vinylidene was
given for that system.
This work was supported by the National “Young Thousand
Talents Plan”, National Natural Science Foundation of China
(Nos. 21871150) and the Fundamental Research Funds for
Central University. We gratefully acknowledge the State Key
Laboratory of Elemento-organic Chemistry and College of
Chemistry of Nankai University for generous financial support.
For thermal Tetradehydro-Diels-Alder reactions with ynamide: a) J. R.
Dunetz, R. L. Danheiser, J. Am. Chem. Soc. 2005, 127, 5776-5777; b)
M. F. Martínez-Esperón, D. Rodríguez, L. Castedo, C. Saá, Org. Lett.
2005, 7, 2213-2216; c) M. F. Martínez-Esperón, D. Rodríguez, L.
Castedo, C. Saá, Tetrahedron 2006, 62, 3843-3855; d) M. F. Martínez-
Esperón, D. Rodríguez, L. Castedo, C. Saá, Tetrahedron 2008, 64,
3674-3686.
[7]
[8]
[9]
L. S. Tsutsumi, D. Gündisch, D. Sun, Curr. Top. Med. Chem. 2016, 16,
1290-1313.
Keywords: dual gold catalysis • tetradehydro-Diels-Alder
reactions • gold vinylidene • 6π electrocyclization
Facile H/D exchange of alkyne terminal hydrogen with D2O was
observed: see ref. 1a, 1c.
[1]
a) L. Ye, Y. Wang, D. H. Aue, L. Zhang, J. Am. Chem. Soc. 2012, 134,
31-34; b) A. S. K. Hashmi, I. Braun, M. Rudolph, F. Rominger,
Organometallics 2012, 31, 644-661; c) A. S. K. Hashmi, M. Wieteck, I.
Braun, P. Nçel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth.
Catal. 2012, 354, 555-562; d) A. S. K. Hashmi, I. Braun, P. Nçel, J.
Schulich, M. Wieteck, M. Rudolph, F. Rominger, Angew. Chem. Int. Ed.
2012, 51, 4456-4460; Angew. Chem. 2012, 124, 4532-4536; e) A.
GýmezSu‚rez, S. P. Nolan, Angew. Chem. Int. Ed. 2012, 51, 8156-
8159; Angew. Chem. 2012, 124, 8278-8281; f) A. S. K. Hashmi, M.
Wieteck, I. Braun, M. Rudolph, F. Rominger, Angew. Chem. Int. Ed.
2012, 51, 10633-10637; Angew. Chem. 2012, 124, 10785-10789; g) M.
M. Hansmann, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew.
Chem. Int. Ed. 2013, 52, 2593-2598; Angew. Chem. 2013, 125, 2653-
2659; h) P. Nçel, T. Lauterbach, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Chem. Eur. J. 2013, 19, 8634-8641; i) D. D. Vachhani, M. Galli,
J. Jacobs, L. Van Meervelt, E. V. Van der Eycken, Chem. Commun.
2013, 49, 7171-7173; j) Y. Wang, A. Yepremyan, S. Ghorai, R. Todd, D.
H. Aue, L. Zhang, Angew. Chem. Int. Ed. 2013, 52, 7795-7799; Angew.
Chem. 2013, 125, 7949-7953; k) I. Braun, A. M. Asiri, A. S. K. Hashmi,
ACS Catal. 2013, 3, 1902-1907; l) M. H. Vilhelmsen, A. S. K. Hashmi,
Chem. Eur. J. 2014, 20, 1901-1908; m) M. Wieteck, Y. Tokimizu, M.
Rudolph, F. Rominger, H. Ohno, N. Fujii, A. S. K. Hashmi, Chem. Eur. J.
2014, 20, 16331-16336; n) A. S. K. Hashmi, Acc. Chem. Res. 2014, 47,
864-876; o) J. Bucher, T. Stçßer, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Angew. Chem. Int. Ed. 2015, 54, 1666-1670; Angew. Chem.
2015, 127, 1686-1690; p) R. J. Harris, R. A. Widenhoefer, Angew.
Chem. Int. Ed. 2015, 54, 6867-6869; Angew. Chem. 2015, 127, 6971-
6973; (q) M. H. Larsen, K. N. Houk, A. S. K. Hashimi, J. Am. Chem.
Soc. 2015, 137, 10668-10676; (r) Y. Tokimizu, M. Wieteck, M. Rudolph,
S. Oishi, N. Fuji, A. S. K. Hashimi, H. Ohno, Org. Lett. 2015, 17, 604-
607; (s) C. Yu, B. Chen, T. Zhou, Q. Tian, G. Zhang, Angew. Chem. Int.
Ed. 2015, 54, 10903-10907; Angew. Chem. 2015, 127, 11053-11057.
For alternative process involving gold vinylidene species, see: a) P.
Morán-Poladura, E. Rubio, J. M. González, Angew. Chem. Int. Ed.
2015, 54, 3052-3055; Angew. Chem. 2015, 127, 3095-3098; b) Y.
Wang, M. Zarca, L.-Z. Gong, L. Zhang, J. Am. Chem. Soc. 2016, 138,
7516-7519; c) J. Bucher, T. Wurm, K. S. Nalivela, M. Rudolph, F.
For metal vinylidene in 6π electrocyclization: a) C. A. Merlic, M. E.
Pauly, J. Am. Chem. Soc. 1996, 118, 11319-11320; b) K. Maeyama, N.
Iwasawa, J. Org. Chem. 1999, 64, 1344-1346; c) J. W. Dankwardt,
Tetrahedron Lett. 2001, 42, 5809-5812; d) T. Miura, N. Iwasawa, J. Am.
Chem. Soc. 2002, 124, 518-519; e) H.-C. Shen, S. Pal, J.-J. Lian, R.-S.
Liu, J. Am. Chem. Soc. 2003, 125, 15762-15763; f) J.-J. Lian, A.
Odedra, C.-J. Wu, R.-S. Liu, J. Am. Chem. Soc. 2005, 127, 4186-4187.
[10] An off-cycle gem-diaurated species might be involved: a) D. Weber, T.
D. Jones, L. L. Adduci, M .R. Gagné, Angew. Chem. Int. Ed. 2012, 51,
2452-2456; Angew. Chem. 2012, 124, 2502-2506; b) D. Weber, M. R.
Gagné, Chem. Sci. 2013, 4, 335-338; and Ref 1c.
[11] For Friedel-Craft alkylation of gold carbenoid: a) N. D. Shapiro, F. D.
Toste, J. Am. Chem. Soc. 2007, 129, 4160-4167; b) B. Yu, Y. Li, Y.
Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem. Soc. 2013, 135,
8512-8512; c) Y. Wang, K. Ji, S. Lan, L. Zhang, Angew. Chem. Int. Ed.
2012, 51, 1915-1918; Angew. Chem. 2012, 124, 1951-1954; d) Z. Yu, B.
Ma, M. Chen. H.-H. Wu, L. Liu, J. Zhang, J. Am. Chem. Soc. 2014, 136,
6904-6907; e) Z. Yu, B. Ma, M. Chen, H.-H. Wu, L. Liu, J. Zhang,
Angew. Chem. Int. Ed. 2017, 56, 2749-2753; Angew. Chem. 2017, 129,
2793-2797.
[12]
For C-H insertion into gold carbenoid: a) Y. Horino, T. Yamamoto, K.
Ueda, S. Kuroda, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 2809-
2811; b) Y. Wang, Z. Zhang, L. Zhang, J. Am. Chem. Soc. 2015, 137,
5316-5319.
[13] The corresponding indoline type product 2m was formed exclusively,
without any Cl-migration product being detected.
[14] CCDC-1864280
(5aa),
CCDC-1864281
(5ab)
contain
the
supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
[15] So far, only formal carbene insertion to Csp2-Csp3 and C-X bonds were
reported, which were enabled by transition metal oxidative addition of
Csp2-Csp3 and C-X bonds. For examples, see: a) Y. Xia, Z. Lin, Z. Liu, R.
Ge, F. Ye, M. Hossain, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2014,
136, 3013-3015; b) K. L. Greenman, D. L. V. Vranken, Tetrahedron,
2005, 61, 6438-6441; c) Y. Gao, G. Wu, Q. Zhou, J. Wang, Angew.
Chem. Int. Ed. 2018, 57, 2716-2720; Angew. Chem. 2018, 130, 2746-
[2]
This article is protected by copyright. All rights reserved.