Journal of the American Chemical Society
Page 4 of 6
determined from THz-TDS measurements on single crystals
(Fig. 3 and Table 1).36 Moreover, the polarizabilities from the
THz-TDS measurements display clear correlation
obtained free of charge from the Cambridge Crystallographic
1
2
a
AUTHOR INFORMATION
Corresponding Author
3
4
5
6
7
8
9
(weighted fit macro R2=0.93, nano R2=0.93) with inverse
Young’s modulus obtained using AFM measurements (95%
confidence limit) (Fig. 3b). These results also agree
qualitatively with DFT calculations using the RB3LYP
method (see SI).37,38 Hence, the polarizabilities of the solids
increase with increasing size of the res substituent, which
corresponds to the decrease in stiffness consistent with the
expected inverse relationship.
ACKNOWLEDGMENT
T.P.R. and A.V.T. gratefully acknowledge financial support
from the National Oceanic and Atmospheric Administration
(NOAA) Climate Program Office, Earth System Science
Program, award NA11OAR4310187. L.R.M. gratefully
acknowledges partial financial support from the National
Science Foundation (DMR-1408834).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
While the correlation between Young’s modulus and
atomic polarizability in 1-4 may seem surprising given the
highly-anisotropic nature of organic crystals, two features of
the crystal structures of 1-4 are noteworthy in relation to the
mechanical data. First, the tetramers in each cocrystal
assemble to form layers. That the components maintain
layers across the series is likely a consequence of the isosteric
REFERENCES
relationship between the res derivatives.
Atoms with
(1) Kosa, M.; Tan, J. C.; Merrill, C. A.; Krack, M.; Cheetham, A. K.;
Parrinello, M. ChemPhysChem 2010, 11, 2332.
(2) Kim, T.; Zhu, L. Y.; Al-Kaysi, R. O.; Bardeen, C. J.
ChemPhysChem 2014, 15, 400.
(3) Vogelsberg, C. S.; Garcia-Garibay, M. A. Chem. Soc. Rev. 2012,
41, 1892.
(4) Nath, N. K.; Panda, M. K.; Sahoo, S. C.; Naumov, P.
CrystEngComm 2014, 16, 1850.
(5) Bolton, O.; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 50, 8960.
(6) Mishra, M. K.; Varughese, S.; Ramamurty, U.; Desiraju, G. R. J.
Am. Chem. Soc. 2013, 135, 8121.
(7) Reddy, C. M.; Krishna, G. R.; Ghosh, S. CrystEngComm 2010,
12, 2296.
(8) Varughese, S.; Kiran, M. S. R. N.; Ramamurty, U.; Desiraju, G.
R. Angew. Chem. Int. Ed. 2013, 52, 2701.
(9) Hooks, D. E.; Ramos, K. J.; Bolme, C. A.; Cawkwell, M. J.
Propellants, Explosives, Pyrotechnics 2015, 40, 333.
(10) Ramos, K. J.; Bahr, D. F. Journal of Materials Research 2007,
22, 2037.
(11) Donald, K. J. J. Phys. Chem. A 2006, 110, 2283.
(12) Zeinalipour-Yazdi, C. D.; Christofides, C. J. Appl. Phys. 2009,
106, 054318-1.
(13) Gilman, J. J. Mater. Res. Innovations 1997, 1, 71.
(14) Gilman, J. J. Elctronic basis of the strength of materials; 1st ed.;
Cambridge University Press: New York, 2003.
(15) Gilman, J. J. Chemistry and Physics of mechanical hardness;
3rd ed ed.; Wiley: New Jercy, 2009.
(16) Noorizadeh, S.; Parhizgar, M. Journal of Molecular Structure:
THEOCHEM 2005, 725, 23.
(17) Gilman, J. J. AIP Conference Proceedings 2006, 845, 855.
(18) Karunatilaka, C.; Bučar, D.-K.; Ditzler, L. R.; Friščić, T.;
Swenson, D. C.; MacGillivray, L. R.; Tivanski, A. V. Angew. Chem. Int.
Ed. 2011, 50, 8642.
(19) Ramamurty, U.; Jang, J. I. CrystEngComm 2014, 16, 12.
(20) Cook, R. F. Science 2010, 328, 183.
(21) Shulha, H.; Zhai, X. W.; Tsukruk, V. V. Macromolecules 2003,
36, 2825.
(22) Guo, S.; Akhremitchev, B. B. Langmuir 2008, 24, 880.
(23) Tranchida, D.; Kiflie, Z.; Acierno, S.; Piccarolo, S. Meas. Sci.
Technol. 2009, 20.
(24) MacGillivray, L. R.; Reid, J. L.; Ripmeester, J. A. J. Am. Chem.
Soc. 2000, 122, 7817.
comparable volumes are considered isosteric, while
molecules that differ only in substitution of isosteres at a
specific position are generally expected to form similar
crystal structures.39 Even the anomalous behavior of 2 in
forming Type II halogen bonds26,40 is unable to circumvent a
tendency of the hydrogen-bonded tetramers to form a
layered structure. The structural similarities of 1-4, thus,
allow the data from the AFM measurements to be directly
compared between the solids. Second, the interactions
between the tetramers involve numerous weak and
dispersive forces,41 with the interactions involving the
halogen atoms in 2-4 being considerably weak. Indeed, the
O···X interactions in 3 and 4, which are generally considered
stronger than those of Cl···Cl forces in 2,27 fall within the
definition of a weaker Type I halogen interaction wherein
organization in the solid state arises owing to strong
contributions of close packing.26 Thus, in the absence of any
particularly strong inter-tetramer forces41 yet with layers
pervading across the series, the general increase in softness
and polarizability from 1 (H) to 4 (I) can be ascribed to the
differences in atomic composition of the res components.
In this report, we have demonstrated that
a bulk
mechanical property in the form of Young’s modulus for a
series of organic cocrystals is correlated to atomic
polarizability. The inverse relationship has been verified
using THz-TDS, which establishes the analytical technique as
a rapid and convenient method to obtain polarizability data
related to atomic, molecular, and supramolecular structure.
Given the now demonstrated relationship between chemical
structure and physical properties, we expect present and
future findings to establish atomic-to-bulk correlations that
enable the rational design of a variety of multicomponent
materials with desired mechanical and chemical properties.
ASSOCIATED CONTENT
Supporting Information
(25) Sokolov, A. N.; Bučar, D.-K.; Baltrusaitis, J.; Gu, S. X.;
MacGillivray, L. R. Angew. Chem. Int. Ed. 2010, 49, 4273.
(26) Mukherjee, A.; Tothadi, S.; Desiraju, G. R. Acc. Chem. Res.
2014, 47, 2514.
(27) Cao, D.; Hong, M.; Blackburn, A. K.; Liu, Z. C.; Holcroft, J. M.;
Stoddart, J. F. Chem. Sci. 2014, 5, 4242.
Experimental details, AFM height images of macro- and
nano-sized cocrystals, nanoindentation analysis, single
crystal and powder X-ray diffraction data, Terahertz spectra
and theoretical calculations. This material is available free of
crystallographic data (CCDC 1025228, 1025229) can be
(28) Mukherjee, A.; Desiraju, G. R. IUCrJ 2014, 1, 49.
ACS Paragon Plus Environment