10.1002/anie.201812836
Angewandte Chemie International Edition
COMMUNICATION
2012, 134, 15165. c) C. Jarava-Barrera, A. Parra, A. López, F. Cruz-
Acosta, D. Collado-Sanz, D. J. Cárdenas, M. Tortosa, ACS. Catal. 2016,
6, 442. d) M. Guisán-Ceinos, A. Parra, V. Martín-Heras, M. Tortosa,
Angew. Chem. Int. Ed. 2016, 55, 6969. e) A. López, T. B. Clark, A.
Parra, M. Tortosa, Org. Lett. 2017, 19, 6272. f) C. Jarava-Barrera, A.
Parra, L. Amenós, A. Arroyo, M. Tortosa Chem. Eur. J. 2017, 23, 17478.
[13] a) M. Pineschi, F. Bertolini, V. Di Bussolo, P. Crotti, Curr. Org. Synth.
2009, 6, 290. b) J. He, J. Ling, P. Chiu, Chem. Rev. 2014, 114, 8037.
[14] A. Berkessel, H. Engler, T. M. Leuther, in Science of
Synthesis: Catalytic Oxidation in Organic Synthesis (Ed.: K. Muñiz)
Thieme: Stuttgart, 2017, 1, pp. 245-307.
Acknowledgements
We thank the European Research Council (ERC-337776) and
MINECO (CTQ2016-78779-R) for financial support. L.T. thanks
the Università degli Studi di Roma "La Sapienza" for
postdoctoral fellowship.
a
Keywords: cyclopropane • boron • copper • allylic epoxide •
cyclopropylboronate
[15] b-Elimination from alkyl copper species has been previously proposed:
a) H. Ito, S. Ito, Y. Sasaki, K. Matsuura, M. Sawamura, J. Am. Chem.
Soc. 2007, 129, 14856; b) H. Ito, T. Okura, K. Matsuura, M. Sawamura,
Angew. Chem. Int. Ed. 2010, 49, 560; Angew. Chem. 2010, 122, 570;
c) H. Ohmiya, U. Yokobori, Y. Makida, M. Sawamura, J. Am. Chem.
Soc. 2010, 132, 2895; d) Y. Shido, M. Yoshida, M. Tanabe, H. Ohmiya,
M. Sawamura, J. Am. Chem. Soc. 2012, 134, 18573. e) K. Semba, T.
Fujihara, J. Terao, Y. Tsuji, Angew. Chem. Int. Ed. 2013, 52, 12400.
[16] CCDC 1873299 contains the supplementary crystallographic data for
2a. These data can be obtained free of charge at
[1]
a) R. Faust, Angew. Chem. Int. Ed. 2001, 40, 2251; Angew. Chem.
2001, 113, 2312; b) W. A. Donaldson, Tetrahedron 2001, 57, 8589; c) J.
Pietruszka, Chem. Rev. 2003, 103, 1051; d) L. A. Wessjohann, W.
Brandt, T. Thiemann, Chem. Rev. 2003, 103, 1625; e) P. Tang, Y. Qin,
Synthesis 2012, 44, 2969; f) D. Y.-K. Chen, R. H. Pouwer, J.-A. Richard,
Chem. Soc. Rev. 2012, 41, 4631; g) C. Ebner, E. M. Carreira, Chem.
Rev. 2017, 117, 11651. h) L. Dian and I. Marek, Chem. Rev. 2018, 118,
8415.
[2]
[3]
T. T. Talele, J. Med. Chem. 2016, 59, 8712.
R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57,
5845.
[17] a) S. Harada, N. Kowase, N. Tabuchi, T. Taguchi, Y. Dobashi, A.
Dobashi, Y. Hanzawa, Tetrahedron 1998, 54, 753. b) X. Xie, G. Yue, S.
Tang, X. Huo, Q. Liang, X. She, X. Pan, Org. Lett. 2005, 7, 4057. b) S.
Tang, X. Xie, X. Huo, Q. Liang, X. She, X. Pan, Tetrahedron Lett. 2006,
47, 205. c) R. C. Dhakal, R. K. Dieter, J. Org. Chem. 2013, 78, 12426.
[18] We refer to borylative endo-cyclization to the one in which the boryl
moiety is directly attached to the ring formed. On the other hand,
borylative exo-cyclization is that in which the boryl moiety is not directly
[4]
For a recent review, see: V. Martín-Heras, A. Parra, M. Tortosa,
Synthesis 2018, 50, 470.
[5]
[6]
D. G. Hall, Boronic Acids, Wiley-VCH, Weinheim, 2005.
For an enantioselective approach: a) J. Carreras, A. Caballero, P. J.
Pérez, Angew. Chem. Int. Ed. 2018, 57, 2334. For a diastereoselective
approach: b) T. Imai, H. Mineta, S. Nishida, J. Org. Chem. 1990, 55,
4986; c) S.-M. Zhou, M.-Z. Deng, L.-J. Xia, M.-H. Tang, Angew. Chem.
Int. Ed. 1998, 37, 2845; Angew. Chem. 1998, 110, 3061; d) J. E. A.
Luithle, J. Pietruszka, A. Witt, Chem. Commun. 1998, 2651; e) J. E. A.
Luithle, J. Pietruszka, J. Org. Chem. 1999, 64, 8287; f) J. Pietruszka, A.
Witt, J. Chem. Soc. Perkin Trans. 1 2000, 4293; g) J. E. A. Luithle, J.
Pietruszka, Eur. J. Org. Chem. 2000, 2557; h) J. E. A. Luithle, J.
Pietruszka, J. Org. Chem. 2000, 65, 9194; i) J. Pietruszka, A. Witt, W.
Frey, Eur. J. Org. Chem. 2003, 3219.
attached to the ring formed.
LG
LG
LG
Bpin
CuL
Bpin
exo
endo
Bpin
Bpin
CuL
LCuBpin
[19] For copper-catalyzed borylative exo-cyclizations of alkenes, see: a) H.
Ito, T. Toyoda, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 5990. b) K.
Kubota, E. Yamamoto, H. Ito, J. Am. Chem. Soc. 2013, 135, 2635. c) J.
Royes, S. Ni, A. Farré, E. La Cascia, J. J. Carbó, A. B. Cuenca, F.
Maseras, E. Fernández, ACS Catal. 2018, 8, 2833. d) For a copper(I)-
catalyzed borylative radical cyclization, see: H. Iwamoto, S. Akiyama, K.
Hayama, K.; H. Ito, Org. Lett. 2017, 19, 2614.
[7]
[8]
[9]
a) M. Rubina, M. Rubin, V. Gevorgyan, J. Am. Chem. Soc. 2003, 125,
7198; b) A. Parra, L. Amenós, M. Guisán-Ceinos, A. López, J. L. García
Ruano, M. Tortosa, J. Am. Chem. Soc. 2014, 136, 15833; c) B. Tian, Q.
Liu, X. Tong, P. Tian, G.-Q. Lin, Org. Chem. Front. 2014, 1, 1116.
a) H. Ito, Y. Kosaka, K. Nonoyama, Y. Sasaki, M. Sawamura, Angew.
Chem. Int. Ed. 2008, 47, 7424; Angew. Chem. 2008, 120, 7534; b) C.
Zhong, S. Kunii, Y. Kosaka, M. Sawamura, H. Ito, J. Am. Chem. Soc.
2010, 132, 11440.
[20] a) A. Hirai, A. Matsui, K. Komatsu, K. Tanino, M. Miyashita, Chem.
Commun. 2002, 1970; b) M. Pineschi, N. J. Chem. 2004, 28, 657. c) R.
K. Dieter, Y. Huang, F. Guo, J. Org. Chem. 2012, 77, 4949.
[21] CCDC 1873303 contains the supplementary crystallographic data for 2j.
These
data
can
be
obtained
free
of
charge
at
Recent diastereoselective methods that do not provide enantiomerically
enriched cyclopropylboronates: a) M. M. Hussain, H. Li, N. Hussain, M.
Ureña, P. J. Carroll, P. J. Walsh, J. Am. Chem. Soc. 2009, 131, 6516;
b) C. W. Liskey, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 3375; c) S.
Miyamura, M. Araki, T. Suzuki, J. Yamaguchi, K. Itami, Angew. Chem.
Int. Ed. 2015, 54, 846; Angew. Chem. 2015, 127, 860; d) J. He, H.
Jiang, R. Takise, R.-Y. Zhu, G. Chen, H.-X. Dai, T. G. Murali Dhar, J.
Shi, H. Zhang, P. T. W. Cheng, J.-Q. Yu, Angew. Chem. Int. Ed. 2016,
55, 785; Angew. Chem. 2016, 128, 795; e) G. Benoit, A. B. Charette, J.
Am. Chem. Soc. 2017, 139, 1364. f) M. Murai, C. Mizuta, R. Taniguchi,
K. Takai, Org. Lett. 2017, 19, 6104. g) M. Sayes, G. Benoit, A. B.
Charette, Angew. Chem. Int. Ed. 2018, 57, 13514.
[22] The electron deficient aryl unit probably favors the formation of an
extended copper-enolate that could cyclize to give 2j, leaving Hb cis to
the boryl moiety to minimize steric effects. Although
a rapid
isomerizacion of the double bond of the allylic epoxide cannot be ruled
out, we did not detect any E-allylic epoxide when we monitored the
reaction by 1H NMR.
Hb
CuL
R1
R2
R1
R2
O
Bpin
O
Bpin
C
CuL
CN
N
For the formation of a related extended copper-enolate from a benzylic
intermediate, see: J. Lee, S. Radomkit, S. Torker, J. del Pozo, A. H.
Hoveyda, Nat. Chem. 2018, 10, 99.
[10] a) J. Pietruszka, A. Witt, Synlett 2003, 91; b) S. A. Murray, E. C. M. Luc,
S. J. Meek, Org. Lett. 2018, 20, 469. We have only considered methods
in which the starting hydroxyl vinyl boronates could be prepared in an
enantiomerically enriched form.
[23] The relative configuration of 2k was by stablished by comparison of the
the 1H NMR data with compound 2j.
[24] The enantiomeric ratio of the products is expected to be the same as
the allylic epoxides, since one of the stereocenters in the oxirane ring is
not modified through the transformation. Nevertheless, we proved that
the enantiomeric ratio of epoxide 1m was preserve in
cyclopropylboronate 2m. See Supporting Information for details.
[11] Reference 9e reports one example of cyclopropanation with
a
secondary allylic alcohol (R1 ¹ H). The cyclopropylboronates were
obtained as a 1.9:1 mixture of diastereomers.
[12] a) M. Tortosa, Angew. Chem. Int. Ed. 2011, 50, 3950. b) R. Alfaro, A.
Parra, J. Alemán, J. L. García Ruano, M. Tortosa, J. Am. Chem. Soc.
This article is protected by copyright. All rights reserved.