P. Greimel, Y. Ito / Tetrahedron Letters 49 (2008) 3562–3566
3565
6. (a) Schmidt, R. R.; Stumpp, M.; Michel, J. Tetrahedron Lett. 1982,
23, 405–408; (b) Schmidt, R. R.; Stumpp, M. Liebigs Ann. Chem.
1984, 4, 680–691.
7. (a) Morozova, N. G.; Sachkova, Yu. G.; Krivoichenko, I. N.;
Serebrennikova, G. A.; Volkova, L. V.; Evstigneeva, R. P. Bioorg.
Khim. 1990, 16, 550–553; (b) Morozova, N. G.; Sachkova, Yu. G.;
Serebrennikova, G. A.; Volkova, L. V.; Evstigneeva, R. P. Khim. Prir.
Soedin. 1991, 1, 16–19.
8. Volkova, L. V.; Danilov, L. L.; Efimova, V. L.; Danilova, N. P.;
Evstrigneeva, R. P. Bioorg. Khim. 1977, 3, 248–251.
9. Ramirez, F.; Mandal, S. B.; Marecek, J. F. J. Org. Chem. 1983, 48,
2008–2013.
NMR spectra are virtually identical. The methylene group
bearing the primary fatty acid residue, designated sn-1/3b
and sn-1/3a, exhibited the most prominent difference in
the chemical shift of about 0.02 ppm, while the difference
between the anomeric signals was less substantial. Upon
comparison (see Fig. 1) with the previously published nat-
ural PtdGlc,4 similarity of the major constituent from the
natural sample with the synthetic compound 1 was readily
observed, confirming its stereochemistry. Intriguingly, the
minor constituent of the natural sample, about 15%, coin-
cides well with synthetic diastereomer 20, supporting the
hypothesis4 that natural PtdGlc is a mixture of both
diastereomers.
10. (a) Dawson, R. M. C. Biochem. J. 1967, 102, 205–210; (b) Yang, S. F.;
Freer, S.; Benson, A. A. J. Biol. Chem. 1967, 242, 477–484.
11. Kokusho, Y.; Tsunoda, A.; Kato, S.; Machida, H.; Iwasaki, S. Biosci.
Biotechnol., Biochem. 1993, 57, 1302–1305.
12. (a) Shuto, S.; Imamura, S.; Fukukawa, K.; Ueda, T. Tetrahedron Lett.
1987, 28, 199–202; (b) Nagao, A.; Ishida, N.; Terao, J. Lipids 1991,
26, 390–394.
4. Conclusion
13. Schlueter, U.; Lu, J.; Fraser-Reid, B. Org. Lett. 2003, 5, 255–
257.
Diastereomerically pure PtdGlc and its derivatives were
prepared by linkage of b-configured H-phosphonate and
asymmetric diacyl glycerol via a longest linear sequence
of 7 steps. The preparation of b-H-phosphonate was con-
ducted by the direct conversion of the corresponding
orthoester. Further investigations to diversify the carbohy-
drate as well as the glycerol moiety are currently underway
and will be reported in due course.
14. (a) Gaffney, P. R. J.; Reese, C. B. Tetrahedron Lett. 1997, 38, 2539–
2542; (b) Xu, Y.; Lee, S. A.; Kutateladze, T. G.; Sbrissa, D.; Shisheva,
A.; Prestwich, G. D. J. Am. Chem. Soc. 2006, 128, 885–897.
15. Bochkov, A. F.; Sokolovskaya, T. A.; Kochetkov, N. K. Izv. Akad.
Nauk SSSR Khim. 1968, 7, 1570–1575.
16. Utkina, N. S.; Mal’tsev, S. D.; Danilov, L. L.; Shibaev, V. N. Bioorg.
Khim. 1995, 21, 376–381.
17. Nikolaev, A. V.; Ivanov, I. A.; Shibaev, V. N.; Ignatenko, A. V.
Bioorg. Khim. 1991, 17, 1550–1561.
Comparison of 1H NMR data of PtdGlc (1) and its dia-
stereomer 20 suggested the presence of both diastereomers
in the natural sample, obtained from rodent brain.4 As
expected, sn-1,2-di-O-acyl PtdGlc (1) represents the major
compound in the natural sample.
18. Ellervik, U.; Magnusson, G. Tetrahedron Lett. 1997, 38, 1627–1628.
19. Spectroscopic properties of PtdGlc (1): 1H NMR (600 MHz, MeOH-
d4, 35 °C): d = 5.25–5.22 (m, 1H; sn-2), 4.84 (dd, 3J (H,P) = 7.6 Hz,
J = 7.6 Hz, 1H; H-1), 4.46 (dd, J = 3.0 Hz, J = 12.1 Hz, 1H; sn-1b),
4.18 (dd, J = 6.6 Hz, J = 12.1 Hz, 1H; sn-1a), 4.08 (ddd, J = 5.7 Hz,
3J (H,P) = 5.7 Hz, J = 11.3 Hz, 1H; sn-3b), 4.04 (ddd, J = 5.5 Hz, 3J
(H,P) = 5.5 Hz, J = 11.1 Hz, 1H; sn-3a), 3.84 (dd, J = 2.0 Hz,
J = 12.1 Hz, 1H; H-6b), 3.64 (dd, J = 6.0 Hz, J = 12.1 Hz, 1H; H-
6a), 3.37 (dd, J = 9.1 Hz, J = 9.1 Hz, 1H; H-3), 3.35–3.34 (m, 1H; H-
5), 3.26 (dd, J = 9.6 Hz, J = 9.6 Hz, 1H; H-4), 3.22 (dd, J = 8.1 Hz,
J = 9.1 Hz, 1H; H-2), 2.32 (t, J = 7.3 Hz, 2H; Stea-2), 2.30 (t,
J = 7.6 Hz, 2H; Ara-2), 1.63–1.56 (n.r., 4H; Stea-3, Ara-3), 1.28 (s,
60H; Stea-4-17, Ara-4-19), 0.89 (t, J = 7.1 Hz, 6H; Stea-18, Ara-20);
31P NMR (240 MHz, MeOH-d4, 35 °C): d = À0.70 (1P; P); HRMS
(ESI-TOF, neg) calcd for C47H90O13NaP [MÀNa]À: 893.6119, found:
893.6075.
20. Spectroscopic properties of 20: 1H NMR (600 MHz, MeOH-d4,
35 °C): d = 5.25–5.22 (m, 1H; sn-2), 4.84 (dd, 3J (H,P) = 7.1 Hz,
J = 7.6 Hz, 1H; H-1), 4.44 (dd, J = 3.0 Hz, J = 12.1 Hz, 1H; sn-3b),
4.20 (dd, J = 7.1 Hz, J = 12.1 Hz, 1H; sn-3a), 4.07 (ddd, J = 5.7 Hz,
3J (H,P) = 5.7 Hz, J = 11.6 Hz, 1H; sn-1b), 4.04 (ddd, J = 5.7 Hz, 3J
(H,P) = 5.7 Hz, J = 11.3 Hz, 1H; sn-1a), 3.84 (dd, J = 2.0 Hz,
J = 12.1 Hz, 1H; H-6b), 3.65 (dd, J = 5.5 Hz, J = 12.1 Hz, 1H; H-
6a), 3.37 (dd, J = 9.1 Hz, J = 9.1 Hz, 1H; H-3), 3.34–3.34 (m, 1H; H-
5), 3.25 (dd, J = 9.6 Hz, J = 9.8 Hz, 1H; H-4), 3.22 (dd, J = 8.1 Hz,
J = 9.1 Hz, 1H; H-2), 2.32 (t, J = 7.1 Hz, J = 7.6 Hz, 2H; Stea-2),
2.30 (t, J = 7.1 Hz, 2H; Ara-2), 1.62–1.57 (n.r., 4H; Stea-3, Ara-3),
1.28 (s, 60H; Stea-4-17, Ara-4-19), 0.89 (t, J = 6.8 Hz, 6H; Stea-18,
Ara-20); 31P NMR (240 MHz, MeOH-d4, 35 °C): d = À0.70 (1P; P);
HRMS (ESI-TOF, neg) calcd for C47H90O13NaP [MÀNa]À:
893.6119, found: 893.6117.
Acknowledgments
This research was supported by JSPS and a Grant-in-
Aid from the Ministry of Education, Science, Culture,
Sports, and Technology in Japan. The authors thank Ms.
Akemi Takahashi for technical assistance and Dr. Hiro-
yuki Koshino for acquiring high field NMR.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Short, S. A.; White, D. C. J. Bacteriol. 1970, 104, 126–132.
2. Nagatsuka, Y.; Kasama, T.; Ohashi, Y.; Uzawa, J.; Ono, Y.; Shimizu,
K.; Hirabayashi, Y. FEBS Lett. 2001, 497, 141–147.
3. Nagatsuka, Y.; Hara-Yokoyama, M.; Kasama, T.; Takekoshi, M.;
Maeda, F.; Ihara, S.; Fujiwara, S.; Ohshima, E.; Ishii, K.; Kobayashi,
T.; Shimizu, K.; Hirabayashi, Y. PNAS 2003, 100, 7454–7459.
4. Nagatsuka, Y.; Horibata, Y.; Yamazaki, Y.; Kinoshita, M.; Shinoda,
Y.; Hashikawa, T.; Koshino, H.; Nakamura, T.; Hirabayashi, Y.
Biochemistry 2006, 45, 8742–8750.
5. (a) Verheij, H. M.; Smith, P. F.; Bonsen, P. P. M.; Van Deenen, L. L.
M. Biochim. Biophys. Acta 1970, 218, 97–101; (b) Volkova, L. V.;
Luchinskaya, M. G.; Karimova, N. M.; Evstigneeva, R. P. Zh.
Obshch. Khim. 1972, 42, 1405–1408.
21. Spectroscopic properties of 22: 1H NMR (600 MHz, CDCl3/MeOH-
d4 = 2:1, 25 °C): d = 5.42–5.32 (n.r., 8H; Ara-DB), 5.28–5.25 (n.r.,
1H; sn-2), 4.85 (dd, J = 7.6 Hz, 3J (H,P) = 7.6 Hz, 1H; H-1), 4.46 (dd,
J = 3.0 Hz, J = 12.1 Hz, 1H; sn-1b), 4.20 (dd, J = 6.6 Hz,
J = 12.1 Hz, 1H; sn-1a), 4.09–4.04 (m, 2H; sn-3a/b), 3.88 (dd,
J = 2.5 Hz, J = 12.1 Hz, 1 H; H-6b), 3.67 (dd, J = 6.0 Hz,
J = 12.1 Hz, 1H; H-6a), 3.43 (dd, J = 9.1 Hz, J = 9.1 Hz, 1H; H-3),