4
Tetrahedron Letters
10. Popa, M. M, Caira, M. R.; Dumitrascu, F. in Bioactive
with H···N 2.47 Å, C···N 3.165(3) Å and C-H···N angle
Heterocycles: Synthesis and Biological Evaluation; Ameta, K. L.,
Ed.; NovaScience Publishers: New York 2013, pp. 19-40.
11. Li, Q.; Jiang, J.; Fan, A.; Cui, Y.; Jia, Y. Org. Lett. 2011, 13, 312.
12. Shen, L.; Yang, X.; Yang, B.; He, Q.; Hu, Y. Eur. J. Med. Chem.
2010, 45, 11..
131°], and N15 instead not engaged in hydrogen bonding. We
infer that this structural difference may account for the
appearance of two distinct infrared peaks in the range expected
for the CN stretching vibration. In the crystal, the pyridinium
rings of two inversion-related molecules of 9 engage in offset π-
stacking with a centroid···centroid distance of 3.688 Å.
13. Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108,
264.
14. Wang, H.-T., Lu, C.-D.; Tetrahedron Lett. 2013, 54, 3015.
15. Dumitrascu, F.; Mitan, C. I.; Draghici, C.; Caproiu, M. T.;
Raileanu, D. Tetrahedron Lett. 2001, 44, 8379.
16. Dumitrascu, F.; Georgescu, E.; Georgescu, F.; Popa, M. M.;
Dumitrescu, D. Molecules 2013, 18, 2635.
17. Xia, Z.; Przewloka, T.; Koya, K.; Ono, M.; Chen, S.; Sun, L.
Tetrahedron Lett. 2006, 47, 8817.
18. Caira, M. R.; Georgescu, E.; Georgescu, F.; Albota, F.;
Dumitrascu, F. Monatsh. Chem. 2011, 142, 743.
19. Shang, Y.; Zhang, M.; Yu, S.; Ju, K.; Wang, C.; He, X.
Tetrahedron Lett. 2009, 50, 6981.
20. Babaev, E. V.; Efimov, A.V.; Tsisevich, A. A.; Nevskaya, A. A.;
Rybakov, V. B. Mendeleev Commun. 2007, 17, 130.
21. The 5,6,7,8-tetrahydroisoquinoline 1 (8 mmol) and substituted
bromoacetophenone 2 (8 mmol) were stirred in acetone for 6 h.
Figure 3. X-ray structure of 9 with thermal ellipsoids for non-
H atoms drawn at the 50% probability level. Selected bond
distances (Å): C1-N2 1.354(3), N2-C3 1.356(3), N2-C11
1.418(3), C11-C12 1.397(3), C11-C14 1.396(3), C12-N13
1.146(3), C14-N15 1.157(3).
The precipitated compounds
obtained were filtered and were used further in the synthesis of
compounds 4-7. 2-[2-Phenyl-2-oxoethyl]-5,6,7,8-
3 (see Supporting Information)
tetrahydroisoquinolinium bromide (3a). Colorless crystals, with
m.p. 213-215 oC, 93%. Anal. Calcd. C17H18BrNO: C 61.46, H
5.46, Br 24.05, N 4.22. Found: C 61.75, H 5.72, Br 24.42, N 4.43.
1H-NMR (300 MHz, CDCl3, δ): 1.83-1.88 (m, 4H, 2CH2); 2.90,
2.98 (2t, J = 6.0 Hz, 4H, 2CH2); 6.90 (s, 2H, CH2-N); 7.41-7.47
(m, 2H, H-3′, H-5′); 7.55-7.58 (m, 1H, H-4′); 7.64 (d, J = 6.3 Hz,
1H, H-4); 8.07-8.11 (m, 2H, H-2′, H-6′); 8.89 (d, J = 6.3 Hz,1H,
H-3); 9.02 (s, 1H, H-1). 13C-NMR (75 MHz, CDCl3, δ): 21.0
(2CH2); 26.2, 29.7 (2CH2); 65.9 (CH2-N); 127.3 (C-4); 128.8,
129.0 (C-2′, C-3′, C-5′, C-6′); 133.5, 137.9, 142.2 (C-4a, C-8a, C-
1′); 134.7 (C-4′); 145.6 (C-1); 158.4 (C-3); 190.8 (COAr).
In conclusion, we have investigated the efficient synthesis of
new 7,8,9,10-tetrahydropyrrolo[2,1-a]isoquinolines 4-7 formed
via 1,3-dipolar cycloaddition reaction of the corresponding
ylides. The compounds were characterized by NMR spectroscopy
as well as X-ray diffraction in the case of the representative
compounds 3e and 5a. In addition, we were interested in
investigating the stable ylides corresponding to 5,6,7,8-
tetrahydroisoquinoline, and we subsequently isolated, and
characterized by X-ray analysis, the corresponding
tetrahydroisoquinolinium dicyanomethylide 9. The new
compounds could be of relevant synthetic and medicinal interest
and show promising optical properties.
22. To isoquinolinium bromide
3 (3 mmol) was added methyl
propiolate (4 mmol) and the reactiom mixture was stirred under
reflux in 1,2-epoxybutane for 12 h. After the evaporation of the
solvent the residue was treated with ethanol and the crystalline
compound 4 was filtered and washed with a small amount of cold
ethanol on the filter paper. Compounds 4 were crystallized from
ethanol. Methyl 3-benzoyl-7,8,9,10-tetrahydropyrrolo[2,1-
a]isoquinoline-1-carboxylate (4a) Yellow crystals, m.p. 135-136
oC, 45% yield. Anal. Calcd. C21H19NO3: C 75.66, H 5.74, N 4.20.
Found: C 75.85, H 5.51, N 4.48. 1H-NMR (300 MHz, CDCl3, δ):
1.83-1.87 (m, 4H, 2CH2); 2.84, 3.20 (2t, J = 6.0 Hz, 4H, CH2);
3.82 (s, 3H, Me); 6.79 (d, J = 7.1 Hz, 1H, H-6); 7.47-7.54 (m, 3H,
H-3′, H-4′, H-5′); 7.72 (s, 1H, H-2); 7.77-7.80 (m, 2H, H-2′, H-6′);
9.76 (d, J = 7.1 Hz,1H, H-5).13C-NMR (75 MHz, CDCl3, δ): 21.9,
22.6 (2CH2); 27.5, 29.9 (2CH2); 51.6 (Me); 128.4, 129.0 (C-2′, C-
3′, C-3′, C-6′); 117.9, 126.2, 131.3, 131.4 (C-2, C-5, C-6, C-4′);
107.2, 121.5, 128.1, 137.9, 139.2, 140.4 (C-1, C-3, C-6a, C-10a,
C-10b, C-1′); 164.9 (COOMe); 185.1 (COAr). (For compounds 5-
7 see the Supporting Information associated with this paper).
23. Crystallographic data (excluding structure factors) for the
structures in this paper (3e, 5b and 9) have been deposited with
the Cambridge Crystallographic Data Centre as supplementary
publication nos. CCDC 3e: 1000508; 5b: 1000509; 9: 1000510.
Copies of the data can be obtained, free of charge, on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-
(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).
Acknowledgements
MRC is grateful to the NRF (Pretoria) and the University of
Cape Town for research support. MP gratefully acknowledges
financial support from the Sectorial Operational Programme
Human Resources Development 2007-2013 of the Ministry of
European
Funds through
the
Financial
Agreement POSDRU/159/1.5/S/134398.
Supplementary data
Supplementary data associated with this article can be found
in the online version at DOI:
References and notes
1. For a review on the biological activity of indolizines, see: Singh,
G. S.; Mmatli, E. E.; Eur. J. Med. Chem. 2011, 46, 5237-5257.
2. Nasir, A. I.; Gundersen, L.-L.; Rise, F.; Antonsen, O.; Kristensen,
T.; Langhelle, B.; Bast, A.; Custers, I.; Haenen, G. R. M. M.;
Wikstrom, H. Bioorg. Med. Chem. Lett. 1998, 8, 1829.
3. Zhang, Y.-K.; Plattner, J. J.; Zhou, Y.; Xu, M.; Cao, J.; Wu, Q.
Tetrahedron Lett. 2014, 55, 1936.
24. Linn, W. J.; Webster, O. W.; Benson, R. E. J. Am. Chem. Soc.
1963, 85, 2032.
25. Matsumoto, K.; Tanaka, N.; Uchida, T.; Ikemi, Y.; Hayashi, N.;
Aoyama, K.; Kakehi, A. Heterocycles 2001, 54, 611.
4. Yang, B.; Huang, Z.; Guan, H.; Niu, X.; Li, Y.; Fang, S.; Ma, C.;
Tetrahedron Lett. 2013, 54, 5994.
5. Muthusaravanan, S.; Perumal, S.; Yogeeswari, P.; Sriram, D.
26. Diaz-Ortiz, A.; Diez-Barra, E.; de la Hoz, A.; Loupy, A.; Petit, A.;
Sanchez L. Heterocycles 1994, 38, 785.
Tetrahedron Lett. 2010, 51, 6439.
27. Matsumoto, K.; Katsura, H.; Okada, A.; Uchida, T.; Kakehi, A.
6. Amaral, M. F. S. J.; Deliberto, L. A.; de Souza, C. R.; Naal, R. M.
Z. G.; Naal, Z.; Clososki, G. C. Tetrahedron 2014, 70, 3249.
7. Koszarna, B.; Matczak, R.; Krzeszewwski, M.; Vakuliuk, O;
Klajn, J.; Tasior, M.; Nowicki, J. T.; Gryko, D. T. Tetrahedron
2014, 70, 225.
Heterocycl. Commun. 1998, 4, 501.
8. Dumitrascu, F.; Vasilescu, M.; Draghici, C.; Caproiu, M. T.;
Barbu, L.; Dumitrascu, D. G. Arkivoc 2011, (x), 346.
9. Vlahovici, A.; Druta, I.; Andrei, M.; Cotlet, M.; Dinica, R. J.
Lumin. 1999, 82, 155.