Although much less explored than its carbon-based cousin,
the aza-Wittig reaction7 offers an attractive method for imine
formation. Reaction between an iminophosphorane8 (gener-
ated from the Staudinger reaction9 of the correponding azide
with a triarylphosphine) and a carbonyl compond leads to
the formation of a CdN bond in a similar manner to CdC
bond formation by phosphonium ylids. In general, however,
the reaction is rather inefficient when it is performed10 in
an intermolecular sense, although the intramolecular aza-
Wittig reaction has attracted considerable attention as a result
of its potential for the synthesis of nitrogen-containing
heterocycles. In this communication, we compare and
contrast the recognition-mediated formation of an imine in
CDCl3 through a traditional condensation-based approach and
through an aza-Wittig reaction. We demonstrate that the
recognition-mediated aza-Wittig methodology leads to ef-
ficient and high conversion to imine, thus establishing a new
method for the formation of the dynamic imine bond in
CDCl3.
Scheme 1
The traditional approach to the synthesis of imine 3 involves
the reaction of amine 1 with aldehyde 2 in CDCl3 at 25 °C
(Scheme 1) with the removal of water. The formation of imine
3 occurs through bimolecular reaction of the amine and the
aldehyde (k2N/k-2N, Scheme 1). However, the location of
(2) For some recent examples of DCC, see: (a) Cheeseman, J. D.;
Corbett, A. D.; Shu, R.; Croteau, J.; Gleason, J. L.; Kazlauskas, R. J. J. Am.
Chem. Soc. 2002, 124, 5692. (b) Otto, S.; Kubik, S. J. Am. Chem. Soc.
2003, 125, 7804. (c) Stulz, E.; Scott, S. M.; Bond, A. D.; Teat, S. J.; Sanders,
J. K. M. Chem.-Eur. J. 2003, 9, 6039. (d) Gonzalez-Alvarez, A.; Alfonso,
I.; Lopez-Ortiz, F.; Aguirre, A.; Garcia-Granda, S.; Gotor, V. Eur. J. Org.
Chem. 2004, 1117. (e) Ramstro¨m, O.; Lohmann, S.; Bunyapaiboonsri, T.;
Lehn, J.-M. Chem.-Eur. J. 2004, 10, 1711. (f) Chichak, K. S.; Cantrill,
S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart,
J. F. Science 2004, 304, 1308. (g) Buryak, A.; Severin, K. Angew. Chem.,
Int. Ed. 2005, 44, 7935. (h) Corbett, P. T.; Sanders, J. K. M.; Otto, S. J. Am.
Chem. Soc. 2005, 127, 9390. (i) Milanesi, L.; Hunter, C. A.; Sedelinkova,
S. E.; Waltho, J. P. Chem.-Eur. J. 2006, 12, 1081. (j) Shi, B.; Stevenson,
R.; Campopiano, D. J.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 8459.
(k) Bulos, F.; Roberts, S. L.; Furlan, R. E. L.; Sanders, J. K. M. Chem.
Commun. 2007, 3092. (l) Ludlow, R. F.; Liu, J.; Li, H.; Roberts, S. L.;
Sanders, J. K. M.; Otto, S. Angew. Chem., Int. Ed. 2007, 46, 5762. (m)
Haussmann, P. C.; Khan, S. I.; Stoddart, J. F. J. Org. Chem. 2007, 72,
6708. (n) Schultz, D.; Nitschke, J. R. Chem.-Eur. J. 2007, 13, 3660.
(3) (a) Kindermann, M.; Stahl, I.; Reimold, M.; Pankau, W. M.; von
Kiedrowski, G. Angew. Chem., Int. Ed. 2005, 44, 6750. (b) Stankiewicz,
J.; Eckardt, L. H. Angew. Chem., Int. Ed. 2006, 45, 342. (c) Corbett, P. T.;
Sanders, J. K. M.; Otto, S. Angew. Chem., Int. Ed. 2007, 46, 8858. (d)
Sarma, R. J.; Nitschke, J. R. Angew. Chem., Int. Ed. 2008, 47, 377. For a
general review on Systems Chemistry see: (e) Ludlow, R. F.; Otto, S. Chem.
Soc. ReV. 2008, 37, 101.
complementary recognition sites on amine 1 (amidopyridine)
and aldehyde 2 (carboxylic acid), allows the association of these
reactive partners in a binary complex [1•2] opening an alterna-
tive reaction channel leading to the formation of imine 3 (k1N/
k-1N, Scheme 1). The formation of this complex arranges the
reactive groups for a pseudointramolecular reaction within the
[1•2] complex that should be accelerated strongly. In order to
establish a baseline for comparison, we performed a control
reaction between amine 1 and m-tolualdehyde in the presence
of 4-bromophenylacetic acid ([1] ) [m-tolualdehyde] ) [4-bro-
mophenylacetic acid] ) 15 mM) in dry11 CDCl3 at 25 °C to
form imine 4. The extent of the reaction was assayed12 at regular
intervals by 500 MHz 1H NMR spectroscopy and a concentra-
tion-time profile was constructed (Figure 1, open circles).
Kinetic simulation and fitting of this data to the appropriate
bimolecular model (k2N and k-2N, Scheme 1) afforded the
(4) Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. ReV. 2007,
36, 1705.
(5) For some recent examples, see: (a) Pearson, R. J.; Kassianidis, E.;
Slawin, A. M. Z.; Philp, D. Chem.-Eur. J. 2006, 12, 6829. (b) Kassianidis,
E.; Philp, D. Angew. Chem., Int. Ed. 2006, 45, 6334. (c) Kassianidis, E.;
Pearson, R. J.; Philp, D. Chem.-Eur. J. 2006, 12, 8789. (d) Bennes, R.;
Philp, D. Org. Lett. 2006, 8, 3651. (e) Turega, S. M.; Philp, D. Chem.
Commun. 2006, 3684.
(11) CDCl3 (99.8% atom D) was purchased from Aldrich as 100 g
bottles. Bottles were opened under a positive pressure of Ar and the contents
were stored over preactivated 4 Å molecular sieves. The water content was
determined to be 14 ppm using Karl Fischer titration (Mettler Toledo DL32
Coulometer). Samples of aldehyde 2 and 4-bromophenylacetic acid contain
one molecule of water of crystallization. Therefore, the solutions discussed
here, which are prepared from these compounds, will have H2O concentra-
tions of 15 mM.
(6) del Amo, V.; Slawin, A. M. Z.; Philp, D. Org. Lett. 2008, 10, 4589.
(7) Reviews: (a) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.;
de los Santos, J. M. Tetrahedron 2007, 63, 523. (b) Eguchi, S. ARKIVOC
2005, 2, 98. (c) Fresneda, P. M.; Molina, P. Synlett 2004, 1. (d) Eguchi, S.;
Okano, T.; Okawa, T. Rec. Res. Dep. Org. Chem. 1997, 1, 337. (e) Molina,
P.; Vilaplana, M. J. Synthesis 1994, 197.
(8) (a) Staudinger, H.; Meyer, J. HelV. Chim. Act. 1919, 2, 635. (b)
Patonay-Peli, E.; Litkei, G. Synthesis 1990, 511. (c) Cambon, F. A. Synth.
Commun. 1994, 24, 2653. (d) Shalev, D. E.; Chiacchiera, J. Org. Chem.
1996, 61, 1689.
(12) The time course of each reaction was followed by 500 MHz 1H
NMR spectroscopy. The disappearance of the resonances arising from the
aldehyde protons in 2 or m-tolualdehyde (δ ) 9.9-10.1) and the
simultaneous appearance of resonances arising from the imine protons in 3
or 4 (δ ) 8.4-8.5) were monitored. Concentration vs time profiles were
constructed by deconvolution of these resonances.
(9) For a general review on the chemistry and properties of azides see:
Bra¨se, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed.
2005, 44, 5188, and references therein.
(13) von Kiedrowski, G. SimFit, A program for the analysis of kinetic
data, Version 1.0; Ruhr-Universita¨t Bochum: Germany, 1994.
(10) Palacios, F.; Vicario, J.; Aparicio, D. J. Org. Chem. 2006, 71, 7690.
302
Org. Lett., Vol. 11, No. 2, 2009