M. F. Dalence-Guzmán et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4999–5003
5003
Table 3
suggesting that 71 has a suitable profile for selective pulmonary
delivery with low systemic exposure.
Interestingly, 71 also displayed relevant anti-inflammatory
properties. LTB4 and MCP-1 production in LPS stimulated human
peripheral mononuclear blood cells was significantly inhibited by
71 at 10 lM.
The combination of the demonstrated relaxing effects on con-
tracted human small airways (ex-vivo), anti-inflammatory proper-
ties and lung selective pharmacokinetics makes 71 a very suitable
candidate for further development towards the treatment of pul-
monary diseases such as COPD and asthma.
Compound
% RCa 10
lM
90b
84
78
89
29
85
75
91
a
References and notes
Percentage remaining contraction at the indicated
concentration in the presence of test compound and
LTD4 compared to the maximum contraction caused by
LTD4.
1. (a) Contoli, M.; Bousquet, J.; Fabbri, L. M.; Magnussen, H.; Rabe, K. F.; Siafakas,
N. M.; Hamid, Q.; Kraft, M. Allergy 2010, 65, 141; (b) Sturton, G.; Persson, C.;
Barnes, P. J. Trends Pharmacol. Sci. 2008, 29, 340.
b
Prepared by catalytic transfer hydrogenation of 72.
2. (a) Takeda, T.; Oga, T.; Niimi, A.; Matsumoto, H.; Ito, I.; Yamaguchi, M.;
Matsuoka, H.; Jinnai, M.; Otsuka, K.; Oguma, T.; Nakaji, H.; Chin, K.; Mishima,
Nasuhara, Y.; Odajima, N.; Nagai, K.; Ito, Y.; Betsuyaku, T.; Nishimura, M. Thorax
2009, 64, 332.
3. Janssen, L. J.; Killian, K. Respir. Res. 2006, 7, 123.
4. Huchon, G.; Magnussen, H.; Chuchalin, A.; Dymek, L.; Gonod, F. B.; Bousquet, J.
Respir. Med. 2009, 103, 41.
5. Skogvall, S.; Dalence-Guzmán, M. F.; Berglund, M.; Svensson, K.; Mesic, A.;
Jönsson, P.; Persson, C. G. A.; Sterner, O. Pulm. Pharmacol. Ther. 2008, 21, 125.
6. (a) Finney, M. J.; Karlsson, J. A.; Persson, C. G. Br. J. Pharmacol. 1985, 85, 29; (b)
Wagner, E. M.; Bleecker, E. R.; Permutt, S.; Liu, M. C. Am. J. Respir. Crit. Care Med.
1998, 157, 447.
7. Baroffio, M.; Emanuele, C.; Brusasco, V. Ther. Adv. Respir. Dis. 2008, 2, 129.
8. (a) Skogvall, S.; Berglund, M.; Dalence-Guzmán, M. F.; Svensson, K.; Jönsson, P.;
Persson, C. G. A.; Sterner, O. Pulm. Pharmacol. Ther. 2007, 20, 273; (b) Dalence-
Guzmán, M. F.; Berglund, M.; Skogvall, S.; Sterner, O. Bioorg. Med. Chem. 2008,
16, 2499; (c) Berglund, M.; Dalence-Guzmán, M. F.; Skogvall, S.; Sterner, O.
Bioorg. Med. Chem. 2008, 16, 2513; (d) Berglund, M.; Dalence-Guzmán, M. F.;
Skogvall, S.; Sterner, O. Bioorg. Med. Chem. 2008, 16, 2529.
improve the potency as seen in the butanoyl amide series. How-
ever, substitution of the cinnamide moiety was allowed (71).
Finally the role of dichlorination was evaluated. As can be seen
in Table 3 only the di-chlorinated analogue 90 displayed retained
potency. Neither di-fluorination nor di-methylation provided
active compounds (84 and 78, respectively). Although chlorine
has an inductive effect, intramolecular hydrogen bonding plays a
dominant role in lowering the pKa of chlorophenols.21 We suggest
that the role of the chlorine atoms is to provide intramolecular
hydrogen bonding to the hydroxyl groups, lowering the pKa of
both hydroxyl groups and providing a partial dianion character.
This is partially verified by the difluorinated analogue as it has
been experimentally demonstrated that fluorine provides a much
smaller hydrogen bond in ortho-halogenated phenols.22 If the
hydrogen bonding only improved the bidentate binding capability
of the catechol it was believed that the bis-dihydrofuran derivative
89 would show activity, which was not the case.
9. Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O’Brien, C. J.;
Valente, C. Chem. Eur. J. 2006, 12, 4749.
10. Blommaert, A.; Turcaud, S.; Anne, C.; Roques, B. P. Bioorg. Med. Chem. 2004, 12,
3055.
11. Kwok, T. J.; Virgilio, J. A. Org. Process. Res. Dev. 2005, 9, 694.
12. Hynd, G.; Ray, N. C.; Finch, H.; Middlemiss, D.; Cramp, M. C.; Blaney, P. M.;
Williams, K.; Griffon, Y.; Harrison, T. K.; Crackett, P. PCT Int. Appl. WO
2006136859 A2, 2006.
Compound 7123 was further evaluated and characterized as a
potential drug candidate. The EC50 was determined to 2.27 lM
and the maximum functional efficacy to 98% in the ex-vivo assay.
13. Srikrishna, A.; Satyanarayana, G.; Prasad, M. R. Synth. Commun. 2005, 35, 1687.
14. For compound 9 see Li, J.-H.; Wang, D.-P.; Xie, Y.-X. Synthesis 2005, 13, 2193.
15. Gray, M.; Andrews, I. P.; Hook, D. F.; Kitteringham, J.; Voyle, M. 2000, 41, 6237.
16. McKillop, A.; Madjdabadi, F. A.; Long, D. A. Tetrahedron Lett. 1983, 24, 1933.
17. Ladd, D. L.; Weinstock, J. J. Org. Chem 1981, 46, 203.
18. Adejare, A.; Gusovsky, F.; Padgett, W.; Creveling, C. R.; Daly, J. W.; Kirk, K. L. J.
Med. Chem. 1988, 31, 1972.
19. Perchonock, C. D.; Lantos, I.; Finkelstein, J. A.; Holden, K. G. J. Org. Chem. 1980,
45, 1950.
Further pharmacological studies using isolated human small air-
ways revealed that 10 lM 71 gave 93%, 97% and 82% relaxation
of acetylcholine, histamine and a combination, ‘‘cocktail”, of
LTD4, acetylcholine and histamine induced contractions, respec-
tively. This demonstrates that 71 act as a fully functional antago-
nist against contractile agents.
Compound 71 has moderate aqueous solubility (18 lM) with a
20. (a) Monte, A. P.; Marona-Lewicka, D.; Parker, M. A.; Wainscott, D. B.; Nelson, D.
L.; Nichols, D. E. J. Med. Chem. 1996, 39, 2953; (b) Parham, W. E.; Jones, L. D.;
Sayed, Y. A. J. Org. Chem. 1976, 41, 1184.
measured log D7.4 of 3.5. The compound is stable in plasma but
rapidly metabolized through phase II mechanisms in human hepa-
tocytes in the presence of co-factors (in vitro). Half-life in vivo was
estimated to 0.02 h. Metabolites arising from glucuronidation and
sulfatation were identified as the main metabolites and 71 showed
very similar in vitro metabolic profiles in both rat and dog.
In vivo pharmacokinetic studies in rats following intratracheal
administration showed that 71 was detectable in the lung up to
24 h post dosing but not in plasma after 2 h. At all time points
higher levels of 71 were measured in the lung compared to plasma
21. Han, J.; Deming, R. L.; Tao, F.-M. J. Phys. Chem. A 2004, 108, 7736.
22. Bourassa-Bataille, H.; Sauvageau, P.; Sandorfy, C. Can. J. Chem. 1963, 41, 2240.
23. 1H NMR (CD3OD) rotameric mixture d 8.92 (maj) (d, J = 2.0 Hz, 1H) 8.88 (min) (d,
J = 1.6 Hz, 1H) 8.21 (maj) (dd, J = 2.0, 8.4 Hz, 1H) 8.17 (min) (dd, J = 2.0, 8.4 Hz,
1H) 7.84 (d, J = 8.4 Hz, 1H) 6.72 (maj) (br s, 1H) 6.70 (min) (br s, 1H) 4.72 (maj) (s,
2H) 4.66 (min) (s, 2H) 3.91 (min) (t, J = 6.0 Hz, 2H) 3.82 (maj) (t, J = 6.0 Hz, 2H)
2.87–2.82 (m, 2H) 2.29 (maj) (d, J = 1.2 Hz, 3H) 2.19 (min) (d, J = 1.0 Hz, 3H). 13
C
NMR (DMSO-d6) d 164.2, 149.9, 146.3 (q), 141.9, 141.6, 136.9, 136.7, 136.6, 134.3,
123.6, 123.0, 122.9, 120.8, 119, 6, 117.7, 48.6, 42.6, 42.2, 27.4. HRMS (ESI) calc. for
C19H16Cl2F3N2O3 [M+H] 447.0490, found 447.0374.