7382
L. Cao, C. Li / Tetrahedron Letters 49 (2008) 7380–7382
Table 4
was washed with brine, and dried over anhydrous MgSO4. After re-
I-2/TiCl3-initiated iodine atom-transfer radical cyclization
moval of the solvent under reduced pressure, the crude product
was purified by column chromatography on silica gel using hex-
ane/ethyl acetate (50:1, v/v) as the eluent to give the product 3a
as a colorless oil (146 mg, 90%).6
I
R1
O
R1
I-2 / TiCl3
N
I
R2
EtOH/H2O (4:1), rt, 3 h
N
R2
O
Acknowledgments
9
8
Entry
R1
R2
I-2/TiCl3 (mol %)
Product (yield)a
This project was supported by the National NSF of China (Grant
Nos. 20672136, 20772142 and 20832006) and by the Shanghai
Municipal Committee of Science and Technology (Grant No.
07XD14038).
1
2
3
4
5
6
H
H
H
H
Me
Me
Allyl
Ts
Ms
Me
Allyl
Ts
5
9a (99%)
9b (96%)
9c (86%)
9d (40%)
9e (96%)b
9f (91%)c
10
10
20
5
10
References and notes
I
1. For reviews see: (a) Giese, B. Radicals in Organic Synthesis: Formation of Carbon–
Carbon Bonds; Pergamon: Oxford, UK, 1986; (b) Curran, D. P. Synthesis 1988,
417. and 489; (c) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91,
1237; (d) Melikyan, G. G. Synthesis 1993, 833; (e) Iqbal, J.; Bhatia, B.; Nayyar, N.
K. Chem. Rev. 1994, 94, 519; (f) Snider, B. B. Chem. Rev. 1996, 96, 339; (g) Curran,
D. P.; Porter, N. A.; Giese, B. Sterochemistry of Radical Reactions; VCH: Weinheim,
Germany, 1996; (h) Gansauer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771;
(i)Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH:
Weinheim, Germany, 2001; (j) Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem.
Rev. 2003, 103, 3263.
I-2 (10 mol%)
TiCl3 (10mol%)
I
R
R
O
O
EtOH/H2O (4:1), rt, 3 h
O
O
10
R = H
Me
11a (88%)a
11b (90%)a, d
a
Isolated yield based on 8 or 10.
trans/cis = 78:22.
b
c
trans/cis = 84:16.
trans/cis = 17:83.
2. (a) Kharasch, M. S.; Skell, P. S.; Fisher, P. J. Am. Chem. Soc. 1948, 70, 1055; (b)
Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
3. (a) Curran, D. P.; Bosch, E.; Kaplan, J.; Newcomb, M. J. Org. Chem. 1989, 54, 1826;
(b) Curran, D. P.; Chang, C.-T. J. Org. Chem. 1989, 54, 3140; (c) Curran, D. P.;
Chen, M.-H.; Spleterz, E.; Seong, C. M.; Chang, C.-T. J. Am. Chem. Soc. 1989, 111,
8872; (d) Curran, D. P.; Seong, C. M. J. Am. Chem. Soc. 1990, 112, 9401; (e)
Curran, D. P.; Tamine, J. J. Org. Chem. 1991, 56, 2746; (f) Curran, D. P.; Kim, D.
Tetrahedron 1991, 47, 6171; (g) Curran, D. P.; Kim, D.; Ziegler, C. Tetrahedron
1991, 47, 6189.
d
(>109 Mꢀ1 sꢀ1),16 which is about 100 times faster than the rate of
phenyl radical addition to
a
monosubstituted alkene
(ꢁ3 ꢂ 107 Mꢀ1 sꢀ1).17 More importantly, the rate constant for the
iodine atom-transfer from the substrate 1a to the adduct radical
4. Byers, J. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. B., Eds.; Wiley-VCH:
Weinheim, Germany, 2001; Vol. 1, p 72.
is around 2.7 ꢂ 107 Mꢀ1 sꢀ1 3a,18
,
at least one order of magnitude
5. (a) Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1998,
63, 8604; (b) Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K.; Omoto,
K.; Fujimoto, H. J. Am. Chem. Soc. 2000, 122, 11041; (c) Yorimitsu, H.;
Shinokubo, H.; Matsubara, S.; Oshima, K.; Omoto, K.; Fujimoto, H. J. Org.
Chem. 2001, 66, 7776.
higher than that for the trapping of the adduct radical by the dia-
zonium ion I-2 (estimated to be ꢁ1 ꢂ 106 Mꢀ1 sꢀ1).19 This allows
the iodine atom-transfer chain process to proceed smoothly with-
out the intervention of a termination event. On the other hand, the
bromine ATRA of bromoacetates to alkenes is unlikely to happen
because bromine atom-transfer to the adduct radical is much slo-
wer.3a,18 This sets one limitation for the application of I-2/TiCl3.
In summary, we have demonstrated that p-methoxyben-
zenediazonium tetrafluoroborate in combination with TiCl3 suc-
cessfully initiates various modes of iodine ATRA in aqueous media
under mild conditions, making it a useful complement to the exist-
ing initiation systems.
6. Ollivier, C.; Bark, T.; Renaud, P. Synthesis 2000, 1598.
7. (a) Yorimitsu, H.; Wakabayashi, K.; Shinokubo, H.; Oshima, K. Tetrahedron Lett.
1999, 40, 519; (b) Yorimitsu, H.; Wakabayashi, K.; Shinokubo, H.; Oshima, K.
Bull. Chem. Soc. Jpn. 2001, 74, 1963.
8. (a) Yang, Z.-Y.; Burton, D. J. J. Org. Chem. 1991, 56, 5125; (b) Metzger, J. O.;
Mahler, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 902.
9. Lübbers, T.; Schäfer, H. J. Synlett 1991, 861.
10. Quebatte, L.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2004, 43, 1520.
11. Gilbert, B. C.; Kalz, W.; Lindsay, C. I.; McGrail, P. T.; Parsons, A. F.; Whittaker, D.
T. E. J. Chem. Soc., Perkin Trans. 1 2000, 1187.
12. (a) Galli, C. Chem. Rev. 1988, 88, 765; (b) Murphy, J. A.. In Radicals in Organic
Synthesis; Renaud, P., Sibi, M. B., Eds.; Wiley-VCH: Weinheim, Germany, 2001;
Vol. 1, p 299.
Experimental
13. (a) Cannella, R.; Clerici, A.; Pastori, N.; Regolini, E.; Porta, O. Org. Lett. 2005, 7,
645; (b) Clerici, A.; Cannella, R.; Panzeri, W.; Pastori, N.; Regolini, E.; Porta, O.
Tetrahedron Lett. 2005, 46, 8351; (c) Blank, O.; Heinrich, M. R. Eur. J. Org. Chem.
2006, 4331; (d) Heinrich, M. R.; Blank, O.; Wölfer, S. Org. Lett. 2006, 8, 3323; (e)
Heinrich, M. R.; Blank, O.; Wetzel, A. J. Org. Chem. 2007, 72, 476; (f) Blank, O.;
Wetzel, A.; Ullrich, D.; Heinrich, M. R. Eur. J. Org. Chem. 2008, 3179.
14. (a) Wang, J.; Li, C. J. Org. Chem. 2002, 67, 1271; (b) Fang, X.; Xia, H.; Yu, H.;
Dong, X.; Chen, M.; Wang, Q.; Tao, F.; Li, C. J. Org. Chem. 2002, 67, 8481; (c) Yu,
H.; Wu, T.; Li, C. J. Am. Chem. Soc. 2002, 124, 10302; (d) Liu, L.; Wang, X.; Li, C.
Org. Lett. 2003, 5, 361; (e) Yu, H.; Li, C. J. Org. Chem. 2004, 69, 142; (f) Tang, Y.;
Li, C. Org. Lett. 2004, 6, 3229; (g) Liu, L.; Chen, Q.; Wu, Y.-D.; Li, C. J. Org. Chem.
2005, 70, 1539.
15. Li, Y.; Liu, J.; Zhang, L.; Zhu, L.; Hu, J. J. Org. Chem. 2007, 72, 5824.
16. (a) Kryger, R. G.; Lorand, J. P.; Stevens, N. R.; Herron, N. R. J. Am. Chem. Soc. 1977,
99, 7589; (b) Citterio, A.; Minisci, F.; Vismara, E. J. Org. Chem. 1982, 47, 81; (c)
Minisci, F.; Vismara, E.; Fontana, F. J. Org. Chem. 1989, 54, 5224.
17. Heinrich, M. R.; Wetzel, A.; Kirschstein, M. Org. Lett. 2007, 9, 3833.
18. Curran, D. P.; Martin-Esker, A. A.; Ko, S.-B.; Newcomb, M. J. Org. Chem. 1993, 58,
4691.
Typical procedure for the halogen atom-transfer radical
reactions
To the solution of ethyl iodoacetate (1, 107 mg, 0.5 mmol) and
1-octene (2a, 168 mg, 1.5 mmol) in EtOH (4 mL) and H2O (1 mL)
was added p-methoxybenzenediazonium tetrafluoroborate (I-2,
7.5 mg, 0.034 mmol) at room temperature under nitrogen atmo-
sphere. Aqueous titanium(III) chloride (30% wt % solution in 2 N
hydrochloric acid, 13
vigorous stirring. After 1 h, additional portions of I-2 (3.5 mg,
0.016 mmol) and aqueous titanium(III) chloride (7 L, 0.016 mmol)
lL, 0.034 mmol) was added dropwise under
l
were added successively. The reaction was monitored by TLC. After
the iodoacetate 1 disappeared (1 h), the resulting mixture was ex-
tracted with ethyl ether (3 ꢂ 20 mL). The combined organic layer
19. Citterio, A.; Minisci, F. J. Org. Chem. 1982, 47, 1759.