Chem. Mater. 2011, 23, 841–850 841
DOI:10.1021/cm102163w
Spin-Delocalization in Charged States of para-Phenylene-Linked
Dendritic Oligoarylamines†
Akihiro Ito,* Daisuke Sakamaki, Yusuke Ichikawa, and Kazuyoshi Tanaka
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku,
Kyoto 615-8510, Japan
Received August 1, 2010. Revised Manuscript Received November 22, 2010
Two kinds of basic dendritic (or starburst) all-para-phenylene-linked oligotriarylamines, which are
generated from para-phenylenediamine and triphenylamine as core units, respectively, were prepared, and
the electrochemical, spectroelectrochemical, ESR spectroscopic measurements were carried out with
respect to their application as hole transport materials in optoelectronic devices such as organic light-
emitting devices. The prepared dendritic oligoarylamines exhibits the multiredox-active properirs,
and are stably oxidizable up to tetra- or hexacations. According to the degree of oxidation, it was
suggested that the charge distribution of the charged states gradually change so as to reduce the
electrostatic repulsion between increased charges on the basis of the spectroelectrochemical studies.
Moreover, the stability of the generated radical cations and the spin distribution in their radical
cations were confirmed by the ESR measurements.
Introduction
that the para-phenylene-linked bistriarylamines have the
delocalized and/or almost delocalized IV states.3-6
In this study, we focused on two kinds of dendritic (or
starburst) all-para-phenylene-linked oligotriarylamines 1
and 2, which are generated from para-phenylenediamine
and triphenylamine as core units, respectively (Chart 1).
Although the dendritic compound possessing the same7
and/or similar8-12 molecular backbone as 2 has been
Since the first report of the multilayered organic light-
emitting diodes (OLEDs) made from a bistriarylamine
and Alq3 by Tang and VanSlyke,1 triarylamine deriva-
tives have become one of the main components in OLED
devices.2 Because of their electron-rich property, the
positively charged (or hole) states of aromatic amines
are generally so stable that they act as good hole-trans-
port materials in various applications such as xerography,
solar cells, photorefractive systems, and so forth, in
addition to the use of hole-transport layer for OLED
devices.2 Hence, the efforts in the synthesis of many kinds
of oligotriarylamines and their polymers are being con-
tinued to clarify their characterization in device perfor-
mance. In particular, “star-shaped” oligoarylamines are
considered to be useful for the wide variety of electro-
optical applications because of their ability to form grassy
amorphous phases.2 In addition, the intervalence (IV)
compounds bearing two redox-active amino groups have
been exhausively examined so far, and it has been clarified
€
ꢀ
(5) (a) Coropceanu, V.; Lambert, C.; Noll, G.; Bredas, J.-L. Chem.
Phys. Lett. 2003, 373, 153. (b) Coropceanu, V.; Gruhn, N. E.;
€
Barlow, S.; Lambert, C.; Durivage, J. C.; Bill, T. G.; Noll, G.;
ꢀ
Marder, S. R.; Bredas, J.-L. J. Am. Chem. Soc. 2004, 126, 2727.
(6) Nishiumi, T.; Nomura, Y.; Chimoto, Y.; Higuchi, M.; Yamamoto,
K. J. Phys. Chem. B 2004, 108, 7992.
(7) (a) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 11695. (b)
Ranasinghe, M. I.; Varnavski, O. P.; Pawlas, J.; Hauck, S. I.;
Louie, J.; Hartwig, J. F.; Goodson, T. J. Am. Chem. Soc. 2002, 124,
6520.
(8) Hagedorn, K. V.; Varnavski, O.; Hartwig, J.; Goodson, T. J. Phys.
Chem. C 2008, 112, 2235.
(9) (a) Yoshizawa, K.; Chano, A.; Ito, A.; Tanaka, K.; Yamabe, T.;
Fujita, H.; Yamauchi, J.; Shiro, M. J. Am. Chem. Soc. 1992, 114,
5994. (b) Ito, A.; Ino, H.; Matsui, Y.; Hirao, Y.; Tanaka, K.;
Kanemoto, K.; Kato, T. J. Phys. Chem. A 2004, 108, 5715. (c)
Hirao, Y.; Ino, H.; Ito, A.; Tanaka, K.; Kato, T. J. Phys. Chem. A
2006, 110, 4866. (d) Hirao, Y.; Ishizaki, H.; Ito, A.; Kato, T.;
Tanaka, K. Eur. J. Org. Chem. 2007, 186. (e) Hirao, Y.; Ito, A.;
Tanaka, K. J. Phys. Chem. A 2007, 111, 2951. (f) Ito, A.; Sakamaki,
D.; Ino, H.; Taniguchi, A.; Hirao, Y.; Tanaka, K.; Kanemoto, K.;
Kato, T. Eur. J. Org. Chem. 2009, 4441.
† Accepted as part of the “Special Issue on π-Functional Materials”.
*Corresponding author. E-mail: aito@scl.kyoto-u.ac.jp.
(1) Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(2) (a) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (b) Thelakkat, M.
Macromol. Mater. Eng. 2002, 287, 442. (c) Shirota, Y.; Kageyama,
H. Chem. Rev. 2007, 107, 953.
€
(10) (a) Lambert, C.; Noll, G. Angew. Chem., Int. Ed. 1998, 37, 2107. (b)
€
Lambert, C.; Noll, G. Chem.;Eur. J. 2002, 8, 3467.
(11) (a) Stickley, K. R.; Selby, T. D.; Blackstock, S. C. J. Am. Chem.
Soc. 1994, 116, 11576. (b) Stickley, K. R.; Selby, T. D.; Blackstock,
S. C. J. Org. Chem. 1997, 62, 448. (c) Selby, T. D.; Blackstock, S. C.
J. Am. Chem. Soc. 1998, 120, 12155. (d) Selby, T. D.; Kim, K.-Y.;
Blackstock, S. C. Chem. Mater. 2004, 14, 1685. (e) Kim, K.-Y.;
Hassenzahl, J. D.; Selby, T. D.; Szulczewski, G. J.; Blackstock,
S. C. Chem. Mater. 2004, 14, 1691. (f) Li, J. C.; Kim, K.-Y.;
Blackstock, S. C.; Szulczewski, G. J. Chem. Mater. 2004, 16, 4711.
(j) Li, J. C.; Blackstock, S. C.; Szulczewski, G. J. J. Phys. Chem. B
2006, 110, 17493. (h) Chotsuwan, C.; Blackstock, S. C. J. Am.
Chem. Soc. 2008, 130, 12556.
(3) (a) Nelsen, S. F.; Tran, H. Q.; Nagy, M. A. J. Am. Chem. Soc. 1998,
120, 298. (b) Nelsen, S. F.; Ismagilov, R. F.; Powell, D. R. J. Am.
Chem. Soc. 1998, 120, 1924. (c) Nelsen, S. F.; Ismagilov, R. F.;
Teki, Y. J. Am. Chem. Soc. 1998, 120, 2200. (d) Bailey, S. E.; Zink,
J. I.; Nelsen, S. F. J. Am. Chem. Soc. 2003, 125, 5939. (e) Lockard,
J. V.; Zink, J. I.; Konradsson, A. E.; Weaver, M. N.; Nelsen, S. F. J.
Am. Chem. Soc. 2003, 125, 13471.
€
(4) (a) Lambert, C.; Noll, G. J. Am. Chem. Soc. 1999, 121, 8434. (b)
Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor,
€
S.; Kriegisch, V.; Noll, G.; Stahl, R.; Lambert, C.; Leusser, D.;
Stalke, D.; Zabel, M.; Popp, J. J. Am. Chem. Soc. 2004, 126, 7834.
(12) Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 1997, 119, 4492.
r
2010 American Chemical Society
Published on Web 12/21/2010
pubs.acs.org/cm