COMMUNICATIONS
incubation, the fraction with tR 10.0 min yielded, after lyophilization,
17a,b ¥ HCOOH (unlabeled, 36.5 mg, 0.089 mmol, 4.5%), LC ESI-MS
(gradient:% MeOH (t [min]) 5(0)-95(30 35)-5(40 45), cone voltage
40 V). 17a: tR 8.3 min; m/z (%): 401 (3) [MK] , 385 (4) [MNa] , 363
A Method for Thermal Generation of Aryloxyl
Radicals at Ambient Temperatures:
Application to Low-Density Lipoprotein
(LDL) Oxidation**
(100) [MH] , 219 (8), 187(17); 17b: tR 8.5 min; m/z (%): 401 (4) [MK] ,
385 (6) [MNa] , 363 (100) [MH] , 219 (12), 187(14); accurate mass (mean
of 11 measurements Æ standard deviation): 17a,b: calculated for
Thomas Paul* and Keith U. Ingold*
C18H27N4O4: 363.2032, found: m/z 363.2034 Æ 0.0007[ MH] . Preparation
(scaled down to one seventh) was repeated with [1-13C]d-glucose, and the
products were isolated analogously. For the d-arabinose incubation,
fractions with tR 10.5 and 11.3 min yielded, after lyophilization, 11 ¥
HCOOH (12.3 mg, 0.033 mmol, 1.6%) and 12 ¥ HCOOH (4.8 mg,
0.013 mmol, 0.6%), respectively, LC ESI-MS (for gradient and cone
Antioxidant phenols (ArOH) react with peroxyl radicals
.
(ROO ) and form relatively unreactive aryloxyl radicals
.
(ArO ) [Eq. (1)] which, in homogeneous solutions, then trap
a second peroxyl [Eq. (2)].[1, 2] a-Tocopherol (TocH, vit-
voltage, see above). 11: tR 7.5 min; m/z (%): 371 (1) [MK] , 355 (2)
amin E) is the most active lipid-soluble antioxidant in
[MNa] , 333 (45) [MH] , 175 (100), 159 (30); 12: tR 8.3 min; m/z (%): 371
(1) [MK] , 355 (1) [MNa] , 333 (100) [MH] , 315 (5), 189 (5), 187(4);
accurate mass (mean of 10 measurements Æ standard deviation): 11:,
calculated for C17H25N4O3: 333.1927, found: m/z 333.1931 Æ 0.0007
.
.
ArOH ROO À! ArO ROOH
(1)
(2)
.
.
ArO ROO À! nonradical products
[MH] ; 12: calculated for C17H25N4O3: 333.1927, found: m/z 333.1935 Æ
0.0010 [MH] .
mammals[2] but, surprisingly, it acts as a prooxidant in human
low-density lipoproteins (LDL).[3] Oxidatively modified LDL
may initiate atherosclerosis.[4] Various agents (e.g., enzymes,
transition metals) have been suggested to be responsible for
this modification of LDL in vivo.[5] The free radical initiated
oxidation of LDL in which TocH transfers radical character
from water-soluble peroxyls into the LDL has been studied
Received: September 5, 2001 [Z17857]
[1] F. Ledl, E. Schleicher, Angew. Chem. 1990, 102, 597 626; Angew.
Chem. Int. Ed. Engl. 1990, 29, 565 594.
[2] K. M. Biemel, O. Reihl, J. Conrad, M. O. Lederer, J. Biol. Chem. 2001,
276, 23405 23412.
[3] a) D. B. Shin, F. Hayase, H. Kato, Agric. Biol. Chem. 1988, 52, 1451
1458; b) M. A. Glomb, C. Pfahler, Carbohydr. Res. 2000, 329, 515
523; c) S. Vasan, X. Zhang, A. Kapurniotu, J. Bernhagen, S. Teichberg,
J. Basgen, D. Wagle, D. Shih, I. Terlecky, R. Bucala, A. Cerami, J.
Egan, P. Ulrich, Nature 1996, 382, 275 278; d) R. H. Nagaraj, I. N.
Shipanova, F. M. Faust, J. Biol. Chem. 1996, 271, 19338 19345;
e) M. O. Lederer, R. G. Klaiber, Bioorg. Med. Chem. 1999, 7, 2499
2507; f) H. Odani, T. Shinzato, J. Usami, Y. Matsumoto, E. Brink-
mann-Frye, J. W. Baynes, K. Maeda, FEBS Lett. 1998, 427, 381 385.
[4] V. M. Monnier, R. R. Kohn, A. Cerami, Proc. Natl. Acad. Sci. USA
1984, 81, 583 587.
[5] a) A. M. Schmidt, O. Hori, J. Brett, S. D. Yan, J. L. Wautier, D. Stern,
Arterioscler. Thromb. 1994, 14, 1521 1528; b) T. Kislinger, C. F. Fu, B.
Huber, W. Qu, A. Taguchi, S. D. Yan, M. Hofmann, S. F. Yan, M.
Pischetsrieder, D. Stern, A. M. Schmidt, J. Biol. Chem. 1999, 274,
31740 31749; c) A. M. Schmidt, S. D. Yan, S. F. Yan, D. M. Stern,
Biochim. Biophys. Acta 2000, 1498, 99 111.
.
extensively. The resulting tocopheroxyl radical (Toc ) then
carries a lipid peroxidation chain within the LDL in a process
christened tocopherol-mediated peroxidation (TMP).[6] The
aryloxyl radical, tyrosyl, which is formed (in 25% yield) by
reaction of myeloperoxidase with tyrosine during the immune
response, can also initiate LDL peroxidation.[7] These two
examples of aryloxyl radical-induced biological damage high-
light the need for quantitative, in vitro studies of their
reactions using thermolabile compounds which would provide
.
™clean∫ and well-defined ArO fluxes. To design an aryloxyl
radical thermal source (ARTS) which would generate any
.
.
ArO and only that ArO radical is therefore a worthwhile and
exciting challenge.[8]
[6] J. W. Baynes, S. R. Thorpe, Diabetes 1999, 48, 1 9.
[7] C. A. L. S. Colaco, The Glycation Hypothesis of Atherosclerosis,
Springer, Heidelberg, 1997.
Hyponitrites, which are not subject to metal ion- or radical-
induced decomposition,[9, 10] decompose at ambient temper-
atures to give N2 and alkoxyl radicals. It appeared probable
that aryloxyalkoxyl radicals would undergo very fast b-
scission[11] to yield aryloxyl radicals [Eq. (3)]. A synthetic
route to aryloxyalkyl hyponitrites suitable for many different
[8] a) S. D. Yan, X. Chen, J. Fu, M. Chen, H. Zhu, A. Roher, T. Slattery, L.
Zhao, M. Nagashima, J. Morser, A. Migheli, P. Nawroth, D. Stern,
A. M. Schmidt, Nature 1996, 382, 685 691; b) A. Takeda, T. Yasuda,
T. Miyata, Y. Goto, M. Wakai, M. Watanabe, Y. Yasuda, K. Horie, T.
Inagaki, M. Doyu, K. Maeda, G. Sobue, Acta Neuropathol. 1998, 95,
555 558.
[9] See Supporting Information for: a) 1H and 13C NMR data for 7a d,
(Table 1); b) reasoning for the number of observable diastereoisomers
for 7 and assignment of their relative configuration (Tables 1 and 2
and Figure 1); c) 1H and 13C NMR data for 17a,b (Table 3); d) LC
chromatograms (Figure 2); e) 1H and 13C NMR data for 11 and 12
(Table 3).
D
b-scission
.
.
[ArOCR2ON ]2 À! ArOCR2O
ArO R2C O
(3)
À!
ÀN2
[*] Dr. T. Paul,[] Dr. K. U. Ingold
National Research Council of Canada
100 Sussex Drive
Ottawa, ON, K1A 0R6 (Canada)
Fax : (1)613-941-8447
[10] M. O. Lederer, H. P. B¸hler, Bioorg. Med. Chem. 1999, 7, 1081 1088.
[11] B. Huber, F. Ledl, Carbohydr. Res. 1990, 204, 215 220.
[12] M. S. Feather, T. G. Flynn, K. A. Munro, T. J. Kubiseski, D. J. Walton,
Biochim. Biophys. Acta 1995, 1244, 10 16.
E-mail: Thomas.Paul@avecia.com, Keith.Ingold@nrc.ca
[ ] Current Address:
Avecia Ltd., P.O. Box 42, Hexagon House
Blackley, Manchester, M9 8ZS (UK)
Fax : (44)161-721-5240
[**] This work was partly supported by the National Foundation for
Cancer Research. We wish to thank M. C. Depew and J. K. S. Wan
(Queen×s University, Kingston, Canada) for their help in recording
ESR spectra and D. Leek for the NMR measurements.
Supporting information for this article is available on the WWW under
804
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4105-0804 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 5