We appreciate the financial support by the Georgia Cancer
Coalition, Georgia Research Alliance, the National Institutes
of Health (Grants CA123329, CA113917, GM086925 and
GM084933), and the GSU MBD program. We also thank
Dr. Siming Wang, Director of GSU MS Facilities, for her
extensive help with the mass spectrometry work.
Notes and references
1 D. S. Wilson and J. W. Szostak, Annu. Rev. Biochem., 1999, 68,
611–647 and references cited therein.
2 L. M. Adleman, Science, 1994, 266, 1021–1024.
3 N. L. Rosi and C. A. Mirkin, Chem. Rev., 2005, 105, 1547–1562
and references cited therein.
Fig. 3 Fluorescent binding tests of NB-TTP-DNA with D-fructose.
4 K. Sakthivel and C. F. Barbas, Angew. Chem., Int. Ed., 1998, 37,
2872–2875.
5 B. E. Eaton and W. A. Pieken, Annu. Rev. Biochem., 1995, 64,
837–863 and references cited therein.
6 D. G. Hall, Boronic Acids: Preparation, Applications in Organic
Synthesis and Medicine, Wiley-VCH, Weinheim, 2005 and
references cited therein.
7 S. Jin, Y. Cheng, S. Reid, M. Li and B. Wang, Med. Res. Rev.,
2009, DOI: 10.1002/med.20155 and references cited therein.
8 N. Lin, J. Yan, Z. Huang, C. Altier, M. Li, N. Carrasco,
M. Suyemoto, L. Johnston, S. Wang, Q. Wang, H. Fang,
J. Caton-Williams and B. Wang, Nucleic Acids Res., 2007, 35,
1222–1229.
Since fluorophores can self-quench through stacking and
DNA can also modify the fluorescent properties of a
fluorophore if intercalation occurs, we were also interested in
examining whether spacing between two boronic acid-
modified T would affect the intrinsic fluorescent properties
of the fluorophore. Therefore, Templates 1–7 were designed in
such a way that two A bases at the 50-end were separated by
0–6 bases in between while keeping the rest of bases the same
(Table 1), which would lead to DNA sequences with two
boronic acid-modified T separated from 0 to 6 bases.
9 J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond and
T. Carell, Org. Lett., 2006, 8, 3639–3642.
10 C. Bouillon, A. Meyer, S. Vidal, A. Jochum, Y. Chevolot,
J. P. Cloarec, J. P. Praly, J. J. Vasseur and F. Morvan, J. Org.
Chem., 2006, 71, 4700–4702.
11 N. DiCesare, D. P. Adhikari, J. J. Heynekamp, M. D. Heagy and
J. R. Lakowicz, J. Fluoresc., 2002, 12, 147–154.
12 S. Jin, J. F. Wang, M. Y. Li and B. H. Wang, Chem.–Eur. J., 2008,
14, 2795–2804.
13 S. Trupp, A. Schweitzer and G. J. Mohr, Org. Biomol. Chem.,
2006, 4, 2965–2968.
14 J. F. Wang, S. Jin, S. Akay and B. H. Wang, Eur. J. Org. Chem.,
2007, 2091–2099.
15 S. A. Soper, H. L. Nutter, R. A. Keller, L. M. Davis and
E. B. Shera, Photochem. Photobiol., 1993, 57, 972–977.
16 W. P. Ambrose, P. M. Goodwin, J. H. Jett, A. Van Orden,
J. H. Werner and R. A. Keller, Chem. Rev., 1999, 99, 2929–2956.
17 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
18 D. K. Scrafton, J. E. Taylor, M. F. Mahon, J. S. Fossey and
T. D. James, J. Org. Chem., 2008, 73, 2871–2874.
19 S. Jin, G. Choudhary, Y. F. Cheng, C. F. Dai, M. Y. Li and
B. H. Wang, Chem. Commun., 2009, 5251–5253.
20 H. Klenow and I. Henningsen, Proc. Natl. Acad. Sci. U. S. A.,
1970, 65, 168–175.
21 R. H. Cragg, J. F. J. Todd and A. F. Weston, Org. Mass
Spectrom., 1972, 6, 1077–1081.
22 E. L. Rachofsky, R. Osman and J. B. A. Ross, Biochemistry, 2001,
40, 946–956.
23 M. E. Hawkins, W. Pfleiderer, F. M. Balis, D. Porter and
J. R. Knutson, Anal. Biochem., 1997, 244, 86–95.
24 M. R. Arkin, E. D. A. Stemp, C. Turro, N. J. Turro and
J. K. Barton, J. Am. Chem. Soc., 1996, 118, 2267–2274.
The same model sugar, fructose, was chosen for the
fluorescent test. Double stranded NB-TTP-DNA sequences
were generated through primer extension reactions with a
primer/template ratio of 1 : 1 and no heat denaturing before
the binding test. The 21-nt template denoted as Template 0
was used as the control (Table 1). From the testing results
(Fig. S3.1, ESIw), it can be seen that all boronic acid-modified
DNA showed fluorescent intensity changes upon sugar
addition. Such results indicate that having more than one
fluorophore in the DNA sequence did not affect its ability to
fluoresce. The same studies were conducted using the ssDNA.
Again, the boronic acid fluorophore retained its ability to
change fluorescence (Fig. S3.2, ESIw). It should be noted that
the fructose studies were meant to test the intrinsic ability for
the fluorophore in question to change fluorescence. This is not
a ‘‘sensor’’ for fructose or any other sugar.
A novel fluorescent boronic acid conjugated TTP analogue
(NB-TTP) was successfully synthesized. NB-TTP was readily
recognized by the Klenow fragment and incorporated into DNA.
NB-TTP modified DNA showed fluorescence intensity increases
upon binding with fructose. Spacing two boronic acids in various
positions does not fundamentally affect its ability to change
fluorescence upon sugar binding. The boronic acid-modified
thymidine will be very useful for the preparation of DNA-based
sensing and molecular recognition applications and for genomic
DNA incorporation to probe specific properties in the nucleus.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1073–1075 | 1075