Edge Article
Chemical Science
dicarboxylated product dominates and in the absence of CO2
the a,d-reduction of the diene occurs (Fig. 2).
H. Neumann, R. Franke, R. Jackstell and M. Beller,
Science, 2019, 366, 1514–1517.
Probing the substrates a little further revealed that selec-
tive carboxylation of non-conjugated alkenes, such as 6, is
possible under the reaction conditions affording the a,b-
hydrocarboxylated product 7 (Scheme 4a), thus demon-
strating that conjugation of the diene is essential for
successful carboxylation to occur, in a similar fashion to the
reported styrene hydrocarboxylation.16 The methodology
could also be extended to trienes such as 8 with the a,f-
hydrocarboxylated product 9a predominating when using the
conditions employed for dienes in Table 2 (Scheme 4b). In
addition, depending on the reaction conditions employed
one can choose the product distribution required (Scheme
4c); addition of H2O to reaction provides the a,d-mono-
carboxylated product; removal of any proton source affords
the solely the a,d-dicarboxylated product and switching the
electrode system results in a,d-reduction of the diene.
3 (a) Q. Liu, L. Wu, R. Jackstell and M. Beller, Nat. Commun.,
2015, 6, 5933; (b) S.-S. Yan, Q. Fu, L. L. Liao, G.-Q. Sun,
J.-H. Ye, L. Gong, Y.-Z. Bo-Xue and D.-G. Yu, Coord. Chem.
Rev., 2018, 374, 439–463; (c) Y. Cao, X. He, N. Wang,
H.-R. Li and L.-N. He, Chin. J. Chem., 2018, 36, 644–659; (d)
Z. Zhang, L. Gong, X.-Y. Zhou, S.-S. Yan, J. Li and D.-G. Yu,
Acta Chim. Sin., 2019, 77, 783–793.
4 N. W. J. Ang, J. C. A. de Oliveira and L. Ackermann, Angew.
Chem., Int. Ed., 2020, DOI: 10.1002/anie.202003218.
5 (a) L.-X. Wu, Y.-G. Zhao, Y.-B. Guan, H. Wang, Y.-C. Lan,
H. Wang and J.-X. Lu, RSC Adv., 2019, 9, 32628–32633;
(b) M. J. Medeiros, C. Pintaric, S. Olivero and E. Dunach,
Electrochim. Acta, 2011, 56, 4384–4389; (c) S. Torii,
H. Tanaka, T. Hamatani, K. Morisaki, A. Jutand,
F. Puger and J.-F. Fauvarque, Chem. Lett., 1986, 15,
169–172; (d) O. Sock, M. Troupel and J. Perichon,
Tetrahedron Lett., 1985, 26, 1509–1512; (e) J.-C. Folest,
J.-M. Duprilot, J. Perichon, Y. Robin and J. Devynck,
Tetrahedron Lett., 1985, 26, 2633–2636; (f) Y. Sasaki,
Y. Inoue and H. Hashimoto, J. Chem. Soc., Chem.
Commun., 1976, 605–606.
Conclusions
In summary, a highly regioselective hydrocarboxylation process
that enables the direct formation of carboxylic acids from
dienes giving access to a,d-hydrocarboxylation products has
been reported. A wide variety of substrates have been tolerated
under these electrosynthetic conditions; Thus, this approach is
complimentary to the current literature in which a-addition and
dicraboxylation dominates. Preliminary mechanistic studies
suggest that eld inductive effects are dominant over resonance
effects in the transition state. Thus lower regioselectivties of 2
vs. 3 are observed when the 4-substituent is inductively with-
drawing. The current process goes beyond these state-of-the-art
systems enabling the selective mono-carboxylation of 1,3-
dienes, non-conjugated dienes and trienes.
6 H. Wang, Y.-F. Du, M.-Y. Lin, Z. Kai and J.-X. Lu, Chin. J.
Chem., 2008, 26, 1745–1748.
7 J. W. Loveland, Electrolytic production of acyclic carboxylic
acids from hydrocarbons, US Pat., 3032489, May 1, 1962.
8 (a) W. J. M. van Tilborg and C. J. Smit, Recl. Trav. Chim. Pays-
Bas, 2010, 100, 437–438; (b) C.-H. Li, G.-Q. Yuan, X.-C. Ji,
X.-J. Wang, J.-S. Ye and H.-F. Jiang, Electrochim. Acta, 2011,
56, 1529–1534; (c) R. Matthessen, J. Fransaer,
K. Binnemans and D. E. De Vos, RSC Adv., 2013, 3, 4634–
4642; (d) R. Matthessen, J. Fransaer, K. Binnemans and
D. E. De Vos, ChemElectroChem, 2014, 2, 73–76.
9 J. Bringmann and E. Dinjus, Appl. Organomet. Chem., 2001,
15, 135–140.
Conflicts of interest
˜
10 S. Derien, J. C. Clinet, E. Dunach and J. Perichon,
There are no conicts to declare.
Tetrahedron, 1992, 48, 5235–5248.
11 M. Takimoto and M. Mori, J. Am. Chem. Soc., 2001, 123,
2895–2896.
12 A. Tortajada, R. Ninokata and R. Martin, J. Am. Chem. Soc.,
2018, 140, 2050–2053.
Acknowledgements
We thank the Egyptian cultural affairs and missions sectors for
a visiting fellowship to AMS, the EPSRC (EP/P030599/1) and 13 J. Takaya, K. Sasano and N. Iwasawa, Org. Lett., 2011, 13,
Loughborough University for additional funding. Anas Alkayal,
1698–1701.
and Volodymr Tabas for initial substrate screening and Sophie 14 (a) Y.-Y. Gui, N. Hu, X.-W. Chen, L. L. Liao, T. Ju, J.-H. Ye,
Ezeilo for assistance in the preparation of compounds 6 and 7.
Z. Zhang, J. Li and D.-G. Yu, J. Am. Chem. Soc., 2017, 139,
17011–17014; (b) X.-W. Chen, L. Zhu, Y.-Y. Gui, K. Jing,
Y.-X. Jiang, Z.-Y. Bo, Y. Lan, J. Li and D.-G. Yu, J. Am.
Chem. Soc., 2019, 141, 18825–18835.
References
¨
¨
1 (a) J.-B. Peng, H.-Q. Geng and X.-F. Wu, Chem, 2019, 5, 526– 15 G. Baunlich, D. Walther, H. Eibisch and B. Schonecker, J.
552; (b) D. U. Nielsen, X.-M. Hu, K. Daasbjerg and
Organomet. Chem., 1993, 453, 295–298.
T. Skrydstrup, Nat. Catal., 2018, 1, 244–254; (c) R. Franke, 16 A. Alkayal, V. Tabas, S. Montanaro, I. A. Wright, A. V. Malkov
¨
D. Selent and A. Borner, Chem. Rev., 2012, 112, 5675–5732;
and B. R. Buckley, J. Am. Chem. Soc., 2020, 142, 1780–1785.
17 (a) R. Matthessen, J. Fransaer, K. Binnemans and D. E. De
Vos, Beilstein J. Org. Chem., 2014, 10, 2484–2500; (b)
H. Senboku and A. Katayama, Current Opinion in Green and
Sustainable Chemistry, 2017, 3, 50–54.
(d) H. Alper, J. Organomet. Chem., 1986, 300, 1–6.
2 The corresponding carbonylation process is well
established and recently an attractive route to adipic
acid esters has been reported using CO: J. Yang, J. Liu,
This journal is © The Royal Society of Chemistry 2020
Chem. Sci.