Synthesis of Mannose and Galactose Oligonucleotide Conjugates by
Bi-click chemistry
Gwladys Pourceau, Albert Meyer, Jean-Jacques Vasseur, and Franc¸ois Morvan*
Institut des Biomole´cules Max Mousseron (IBMM), UMR 5247 CNRS, UniVersite´ Montpellier 1, UniVersite´
Montpellier 2, Place Euge`ne Bataillon, CC1704, 34095 Montpellier Cedex 5, France
morVan@uniV-montp2.fr
ReceiVed NoVember 14, 2008
Glyco oligonucleotide conjugates, each exhibiting two mannose and two galactose residues, were efficiently
synthesized by two successive 1,3-dipolar cycloadditions (click chemistry). Two phosphoramidite
derivatives were used: one bearing a bromoalkyl group as a precursor to azide functionalization and
another bearing a propargyl group. After a first cycloaddition with a mannosyl-azide derivative, the bromine
atoms were substituted with NaN3 and a second click reaction was performed with a 1′-O-propargyl
galactose, affording the heteroglyco oligonucleotide conjugate.
Introduction
functions. However, because some bacteria exhibit several
lectins recognizing different carbohydrate residues12-14 and also
a single lectin could recognize several carbohydrate residues,15
it is necessary to be able to synthesize such glycomimics bearing
different residues. Several strategies for coupling carbohydrates
to oligonucleotides are reported in the literature,16-21 and to
our knowledge only one describes the attachment of different
sugar moieties on the same scaffold.18 Recently, a synthesis
was reported for a heterobifunctional dendrimer exhibiting
mannose and fucose residues.22 Moreover, during this work,
Carbohydrates are involved in many biological events and
play crucial roles in various cellular recognition processes.1,2
Understanding their interactions with proteins is a major issue
for the development of new therapies. Glycoarrays have recently
emerged as a high-throughput tool for the study of carbohydrate-
lectin binding.3 We recently designed a new glycoarray using
DNA-directed immobilization4,5 and to this end have developed
very efficient strategies based on Cu(I) azide alkyne 1,3-dipolar
cycloaddition,6,7 or click chemistry, to synthesize oligonucleotide
carbohydrate conjugates5,8,9 and galactosylated10 or fucosylated
phosphodiester glycoclusters.11 In these syntheses, the same
carbohydrate (galactose, mannose, or fucose) was introduced
one to ten times onto a scaffold exhibiting one to ten alkyne
(11) Morvan, F.; Meyer, A.; Jochum, A.; Sabin, C.; Chevolot, Y.; Imberty,
A.; Praly, J. P.; Vasseur, J. J.; Souteyrand, E.; Vidal, S. Bioconjugate Chem.
2007, 18, 1637–1643.
(12) Mulvey, G.; Kitov, P. I.; Marcato, P.; Bundle, D. R.; Armstrong, G. D.
Biochimie 2001, 83, 841–847.
(13) Bernardi, A.; Arosio, D.; Potenza, D.; Sanchez-Medina, I.; Mari, S.;
Canada, F. J.; Jimenez-Barbero, J. Chem. Eur. J. 2004, 10, 4395–4406.
(14) Imberty, A.; Wimmerova, M.; Mitchell, E. P.; Gilboa-Garber, N.
Microbes Infect. 2004, 6, 221–228.
(15) Sabin, C.; Mitchell, E. P.; Pokorna, M.; Gautier, C.; Utille, J. P.;
Wimmerova, M.; Imberty, A. FEBS Lett. 2006, 580, 982–987.
(16) Matsuura, K.; Hibino, M.; Yamada, Y.; Kobayashi, K. J. Am. Chem.
Soc. 2001, 123, 357–358.
(1) Varki, A. Glycobiology 1993, 3, 97–130.
(2) Dwek, R. A. Chem. ReV. 1996, 96, 683–720.
(3) Horlacher, T.; Seeberger, P. H. Chem. Soc. ReV. 2008, 37, 1414–1422.
(4) Wacker, R.; Niemeyer, C. M. ChemBioChem 2004, 5, 453–459.
(5) Chevolot, Y.; Bouillon, C.; Vidal, S.; Morvan, F.; Meyer, A.; Cloarec,
J. P.; Jochum, A.; Praly, J. P.; Vasseur, J. J.; Souteyrand, E. Angew. Chem., Int.
Ed. 2007, 46, 2398–2402.
(6) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599.
(7) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
3057–3064.
(17) Dubber, M.; Frechet, J. M. J. Bioconjugate Chem. 2003, 14, 239–246.
(18) Katajisto, J.; Heinonen, P.; Lonnberg, H. J. Org. Chem. 2004, 69, 7609–
7615.
(8) Bouillon, C.; Meyer, A.; Vidal, S.; Jochum, A.; Chevolot, Y.; Cloarec,
J. P.; Praly, J. P.; Vasseur, J. J.; Morvan, F. J. Org. Chem. 2006, 71, 4700–
4702.
(9) Meyer, A.; Bouillon, C.; Vidal, S.; Vasseur, J. J.; Morvan, F. Tetrahedron
Lett. 2006, 47, 8867–8871.
(10) Pourceau, G.; Meyer, A.; Vasseur, J. J.; Morvan, F. J. Org. Chem. 2008,
73, 6014–6017.
(19) Katajisto, J.; Virta, P.; Lonnberg, H. Bioconjugate Chem. 2004, 15, 890–
896.
(20) D’Onofrio, J.; de Champdore, M.; De Napoli, L.; Montesarchio, D.; Di
Fabio, G. Bioconjugate Chem. 2005, 16, 1299–1309.
(21) Singh, Y.; Renaudet, O.; Defrancq, E.; Dumy, P. Org. Lett. 2005, 7,
1359–1362.
(22) Deguise, I.; Lagnoux, D.; Roy, R. New J. Chem. 2007, 31, 1321–1331.
1218 J. Org. Chem. 2009, 74, 1218–1222
10.1021/jo802536q CCC: $40.75 2009 American Chemical Society
Published on Web 01/05/2009