C O M M U N I C A T I O N S
Chem. Res. 2004, 37, 542. (d) Miller, S. J. Acc. Chem. Res. 2004, 37, 601.
(e) Spivey, A. C.; Arseniyadis, S. Angew. Chem., Int. Ed. 2004, 43, 5436.
(f) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974. (g) Wurz,
R. P. Chem. ReV. 2007, 107, 5570.
propose that catalysis in the absence of DMAP involves HB activation
of the anhydride via an intermediate such as A.16 In the presence of
DMAP, intermediates related to B appear to dominate the outcome of
this reaction, as the direct interaction of an acyl pyridinium species
with a thiourea is unlikely.4a Binding of benzoate to thiourea 1a may
have an effect on the equilibrium concentrations of DMAP and its
corresponding acyl pyridinium salt, a factor that is likely playing an
important role in the overall process.17-19
(2) Nucleophilic catalysis is also classified as a type of Lewis base catalysis:
Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.
(3) For selected reviews, see: (a) Kang, S. O.; Begum, R. A.; Bowman-James,
K. Angew. Chem., Int. Ed. 2006, 45, 7882. (b) Sessler, J. L.; Gale, P. A.;
Cho, W.-S. Anion Receptor Chemistry; Royal Society of Chemistry:
Cambridge, UK, 2006; p 413. (c) Caltagirone, C.; Gale, P. A. Chem. Soc.
ReV. 2009, 38, 520.
(4) (a) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2007, 129, 13404. (b) Raheem, I. T.; Thiara, P. S.; Jacobsen,
E. N. Org. Lett. 2008, 10, 1577. (c) Reisman, S. E.; Doyle, A. G.; Jacobsen,
E. N. J. Am. Chem. Soc. 2008, 130, 7198. (d) Klausen, R. S.; Jacobsen,
E. N. Org. Lett. 2009, 11, 887. (e) Peterson, E. A.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2009, 48, 6328.
(5) (a) Kotke, M.; Schreiner, P. R. Tetrahedron 2006, 62, 434. (b) Kotke, M.;
Schreiner, P. R. Synthesis 2007, 779.
(6) For examples of asymmetric catalysis involving chiral anions, see: (a) Alper,
H.; Hamel, N. J. Am. Chem. Soc. 1990, 112, 2803. (b) Llewellyn, D. B.;
Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165. (c) Lacour, J.;
Hebbe-Viton, V. Chem. Soc. ReV. 2003, 32, 373. (d) Carter, C.; Fletcher,
S.; Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995. (e) Llewellyn,
D. B.; Arndtsen, B. A. Tetrahedron: Asymmetry 2005, 16, 1789. (f) Mayer,
S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193. (g) Hamilton, G. L.;
Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496. (h) Rueping,
M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46,
6903. (i) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. (j)
Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am.
Chem. Soc. 2008, 130, 16858. (k) Goncalves-Farbos, M.-H.; Vial, L.;
Lacour, J. Chem. Commun. 2008, 829. (l) Wang, X.; List, B. Angew. Chem.,
Int. Ed. 2008, 47, 1119. (m) Hamilton, G. L.; Kanai, T.; Toste, F. D. J. Am.
Chem. Soc. 2008, 130, 14984.
The scope of the reaction was explored under the previously
optimized conditions (Chart 1). A number of benzylic amines were
resolved with good selectivities. Notably, electron-poor substrates gave
higher s-factors, regardless of the position of the electron-withdrawing
group. Catalysis via the competing and s-factor lowering pathway A
is likely reduced in these cases. Remarkably, the seemingly more
challenging substrates 6l and 6n were resolved with better selectivities
as compared to the parent substrate 6a. Using only 5 mol % of each
DMAP and 1a, amine 6g could be resolved with an only slightly
reduced s-factor of 19 (47% conversion, 2 h). This trend appears to
be general, and other substrates performed well at this lower catalyst
loading.20
(7) Asymmetric Brønsted acid catalysis frequently involves chiral ion pairs.
For a review, see: Akiyama, T. Chem. ReV. 2007, 107, 5744.
(8) (a) Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. Angew. Chem., Int. Ed. 2001,
40, 234. For the kinetic resolution of indolines, see: (b) Arp, F. O.; Fu,
G. C. J. Am. Chem. Soc. 2006, 128, 14264.
Chart 1. Scope of the Reactiona
(9) For the kinetic resolution of oxazolidinones, see: Birman, V. B.; Jiang, H.;
Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536.
(10) Remarkable advances have been made in enzymatic amine resolutions. For
examples, see: (a) Alexeeva, M.; Carr, R.; Turner, N. J. Org. Biomol. Chem.
2003, 1, 4133. (b) Paetzold, J.; Ba¨ckvall, J. E. J. Am. Chem. Soc. 2005,
127, 17620. (c) Turner, N. J. Nat. Chem. Biol. 2009, 5, 567. (d) Ho¨hne,
M.; Bornscheuer, U. T. ChemCatChem 2009, 1, 42.
(11) Kinetic resolutions of amines with stoichiometric amounts of chiral acylating
reagents have been reported. For examples, see: (a) Ie, Y.; Fu, G. C. Chem.
Commun. 2000, 119. (b) Arseniyadis, S.; Valleix, A.; Wagner, A.;
Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314.
(12) For selected reviews on HB catalysis, see: (a) Schreiner, P. R. Chem. Soc.
ReV. 2003, 32, 289. (b) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299.
(c) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
(d) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int.
Ed. 2006, 45, 7496. (e) Doyle, A. G.; Jacobsen, E. N. Chem. ReV. 2007,
107, 5713. (f) Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. (g) Zhang,
Z.; Schreiner, P. R. Chem. Soc. ReV. 2009, 38, 1187.
(13) For selected uses of the catalysts employed in this study, see: (a) Sohtome,
Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004,
45, 5589. (b) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew.
Chem., Int. Ed. 2005, 44, 6576. (c) Fleming, E. M.; McCabe, T.; Connon,
S. J. Tetrahedron Lett. 2006, 47, 7037. (d) Zhang, Y.; Liu, Y.-K.; Kang,
T.-R.; Hu, Z.-K.; Chen, Y.-C. J. Am. Chem. Soc. 2008, 130, 2456. (e)
Rampalakos, C.; Wulff, W. D. AdV. Synth. Catal. 2008, 350, 1785. (f)
Sohtome, Y.; Takemura, N.; Takagi, R.; Hashimoto, Y.; Nagasawa, K.
Tetrahedron 2008, 64, 9423.
a Reactions were performed on a 0.25 mmol scale. The s-factors were
determined by HPLC analysis; see the Supporting Information for details
(14) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
(15) Cocatalysts such as pyridine, NMI, PPY, DBU, and DABCO are less
efficient than DMAP. The use of Et3N in place of DMAP gave results
almost identical to those using 1a as the only catalyst (Table 1, entry 16).
(16) HB activation of anhydrides by (thio)urea catalysts is a well precedented
concept. For examples, see: (a) Peschiulli, A.; Gun’ko, Y.; Connon, S. J.
J. Org. Chem. 2008, 73, 2454. (b) Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee,
J. E.; Youk, S. H.; Chin, J.; Song, C. E. Angew. Chem., Int. Ed. 2008, 47,
7872. (c) Wang, S.-X.; Chen, F.-E. AdV. Synth. Catal. 2009, 351, 547.
(17) The acyl pyridinium salt derived from DMAP and benzoic anhydride is
not formed quantitatively but is likely present in equilibrium concentrations
only. For an excellent study on such equilibria, see: (a) Lutz, V.; Glatthaar,
J.; Wu¨rtele, C.; Serafin, M.; Hausmann, H.; Schreiner, P. R. Chem.sEur.
J. 2009, 15, 8548. See also: (b) Xu, S.; Held, I.; Kempf, B.; Mayr, H.;
Steglich, W.; Zipse, H. Chem.sEur. J. 2005, 11, 4751.
(18) The nature of the anion is crucial with benzoate giving the best results.
Acylating reagents such as PhCOF, PhCOCl, PhCOBr, Ac2O, and trifluo-
roacetic anhydride were inferior to benzoic anhydride.
In summary, we have introduced a new concept for asymmetric
nucleophilic catalysis that involves the use of chiral anion receptors to
generate chiral ion pairs in situ from simple acyl pyridinium salts. This
strategy was successfully applied to the kinetic resolution of amines.
Current efforts are aimed at developing a more complete mechanistic
understanding of this reaction and at exploring related processes.
Acknowledgment. Financial support from Rutgers, The State
University of New Jersey is gratefully acknowledged.
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
(19) The role of the second thiourea subunit is not clear at present.
(20) Additional results using 1a (5 mol%) and DMAP (5 mol%): 6d (s ) 15,
References
46% conv.), 6f (s ) 19, 44% conv.), 6l (s ) 12, 41% conv.).
(1) (a) Fu, G. C. Acc. Chem. Res. 2000, 33, 412. (b) France, S.; Guerin, D. J.;
Miller, S. J.; Lectka, T. Chem. ReV. 2003, 103, 2985. (c) Fu, G. C. Acc.
JA9079435
9
J. AM. CHEM. SOC. VOL. 131, NO. 47, 2009 17061