Ma et al.
Scheme 1. Coordination Modes of H2tbip Observed in 1-6
been devoted to the use of 1,3-benzenedicarboxylic acid,
1,3,5-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxy-
lic acid, and so on, while the use of the large steric hindrance
of the H2tbip ligand remains largely unexplored. To the best
of our knowledge, there has been only one reported polymer
based on the H2tbip ligand hitherto.11 The presence of the
electron-donating (-C(CH3)3) noncoordinating groups in
dicarboxylate ligands changes their electronic and steric
properties, which can generate complexes different from
those of the common dicarboxylate ligands.
On the other hand, rodlike N,N′-donor building blocks,
such as the conventionally employed 4,4′-bipyridine, have
been extensively studied in coordination chemistry, and
modification by introducing spacers between the two 4-py-
ridyl groups can result in distinct spatial effects to produce
unexpected architectures with metal complexes. The use of
these auxiliary ligands may contribute to an understanding
of the assembly and recognition processes in coordination
chemistry.12,13 Therefore, systematic studies have been
carried out in our laboratory by the reaction of Co(II) salts,
the H2tbip ligand, and a series of N-donor ligands to
investigate the influence of multicarboxylate and N-donor
ligands on the properties and construction of coordination
frameworks, and six novel Co(II) coordination polymers,
{[Co(tbip)(bipy)(H2O)3]·0.5(bipy) ·H2O}n (1), [Co(tbip)(bi-
py)]n(2),{[Co3(tbip)3(dpe)3]·0.5(dpe)·3H2O}n(3),[Co2(tbip)2-
(dpe)(H2O)]n (4), [Co2(tbip)2(bpa)(H2O)]n (5), and {[Co2(tbip)2-
(bpa)2]·2.5 H2O}n (6), were successfully obtained by tuning
the reaction conditions including the pH value, reaction
temperature, and auxiliary ligand. They exhibit diverse
structures with dimensionalities from 1D to 3D, of which 1
shows a 1D zigzag chain, 2 and 6 exhibit a 2D layer motif,
3 displays a 3D self-penetrating framework, and interestingly
4 and 5 possess 2-fold interpenetrating 3D R-Po networks.
The details of their syntheses, structures, and magnetic
properties are reported below (see also Scheme 1).
(3) (a) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed.
1999, 38, 2638. (b) Chen, B.; Ma, S.; Zapata, F.; Fronczek, F. R.;
Lobkovsky, E. B.; Zhou, H. C. Inorg. Chem. 2007, 46, 1233. (c)
Moulton, B.; Zaworotko, M. J. Chem. ReV. 2001, 101, 1629.
(4) (a) Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376. (b)
Chen, B. L.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi,
O. M. Angew. Chem., Int. Ed. 2005, 44, 4745. (c) Kesanli, B.; Lin,
W. Coord. Chem. ReV. 2003, 246, 305. (d) Barbour, L. J. Chem.
Commun. 2006, 1163. (e) Horike, S.; Matsuda, R.; Tanaka, D.; Mizuno,
M.; Endo, K.; Kitagawa, S. J. Am. Chem. Soc. 2006, 128, 4222.
(5) (a) Ma, L. F.; Wang, L. Y.; Huo, X. K.; Wang, Y. Y.; Fan, Y. T.;
Wang, J. G.; Chen, S. H. Cryst. Growth Des. 2008, 8, 620. (b) Ma,
L. F.; Wang, Y. Y.; Wang, L. Y.; Liu, J. Q.; Wu, Y. P.; Wang, J. G.;
Shi, Q. Z.; Peng, S. M. Eur. J. Inorg. Chem. 2008, 693. (c) Ma, L. F.;
Huo, X. K.; Wang, L. Y.; Fan, Y. T.; Wang, J. G. J. Solid State Chem.
2007, 180, 1648.
(6) (a) Yang, J.; Yue, Q.; Li, G. D.; Cao, J. J.; Li, G. H.; Chen, J. S.
Inorg. Chem. 2006, 45, 2857. (b) Yue, Q.; Yang, J.; Li, G. H.; Li,
G. D.; Xu, W.; Chen, J. S.; Wang, S. N. Inorg. Chem. 2005, 44, 5241.
(c) Ma, B. Q.; Zhang, D. S.; Gao, S.; Jin, T. Z.; Yan., C. H. Angew.
Chem., Int. Ed. 2000, 39, 3644.
(7) (a) Zhao, B.; Cheng, P.; Chen, X. Y.; Cai, C.; Wei, S.; Liao, D. Z.;
Yan, S. P.; Jiang, Z. H. J. Am. Chem. Soc. 2004, 126, 3012. (b) Chun,
H.; Dybtsev, D. N.; Kim, H.; Kim, K. Chem.sEur. J. 2005, 11, 3521.
(c) Sun, D. F.; Cao, R.; Liang, Y. C.; Shi, Q.; Hong, M. C. Dalton
Trans. 2002, 1847. (d) Zhao, B.; Cheng, P.; Dai, Y.; Cheng, C.; Liao,
D. Z.; Yan, S. P.; Jiang, Z. H.; Wang, G. L. Angew. Chem., Int. Ed.
2003, 42, 934. (e) Li, X. J.; Cao, R.; Bi, W. H.; Wang, Y. Q.; Wang,
Y. L.; Li, X. Polyhedron 2005, 24, 2955. (f) Lin, J. G.; Zang, S. Q.;
Tian, Z. F.; Li, Y. Z.; Xu, Y. Y.; Zhu, H. Z.; Meng, Q. J.
CrystEngComm. 2007, 9, 915. (g) Liu, Q. Y.; Yuan, D. Q.; Xu, L.
Cryst. Growth Des. 2007, 7, 1832.
(8) (a) Liang, Y. C.; Cao, R.; Su, W. P.; Hong, M. C.; Zhang, W. J. Angew.
Chem., Int. Ed. 2000, 39, 3304. (b) Pan, L.; Huang, X. Y.; Li, J.; Wu,
Y. G.; Zheng, N. W. Angew. Chem., Int. Ed. 2000, 39, 527. (c) Du,
M.; Jiang, X. J.; Zhao, X. J. Chem. Commun. 2005, 5521. (d) Ohmura,
T.; Mori, W.; Hasegawa, M.; Takei, T.; Yoshizawa, A. Chem. Lett.
2003, 32, 34. (e) Kesanli, B.; Cui, Y.; Smith, M. R.; Bittner, E. W.;
Bockrath, B. C.; Lin, W. B. Angew. Chem., Int. Ed. 2005, 44, 72. (f)
Pan, L.; Frydel, T.; Sander, M. B.; Huang, X. Y.; Li, J. Inorg. Chem.
2001, 40, 1271.
(9) (a) Bickley, J. F.; Bonar-Law, R. P.; Femoni, C.; MacLean, E. J.;
Steiner, A.; Teat, S. J. Dalton Trans. 2000, 4025. (b) Zhang, X. M.;
Tong, M. L.; Chen, X. M. Angew. Chem., Int. Ed. 2002, 41, 1029. (c)
Kirillov, M.; Kopylovich, M. N.; Kirillova, M. V.; Haukka, M.; Guedes
da Silva, M. F. C.; Pombeiro, A. J. L. Angew. Chem., Int. Ed. 2005,
44, 4345. (d) Barthelet, K.; Riou, D.; Nogues, M.; Ferey, G. Inorg.
Chem. 2003, 42, 1739. (e) Ma, A. Q.; Shi, Z.; Xu, R. R.; Pang, W. Q.;
Zhu, L. G. Chem. Lett. 2003, 32, 1010.
(10) (a) Xiao, D. R.; Wang, E. B.; An, H. Y.; Su, Z. M.; Li, Y. G.; Gao,
L.; Sun, C. Y.; Xu, L. Chem.sEur. J. 2005, 11, 6673. (b) Liang, Y. C.;
Hong, M. C.; Su, W. P.; Cao, R.; Zhang, W. J. Inorg. Chem. 2001,
40, 4574. (c) Shi, X.; Zhu, G. S.; Wang, X. H.; Li, G. H.; Fang, Q. R.;
Wu, G.; Ge, T.; Xue, M.; Zhao, X. J.; Wang, R. W.; Qiu, S. L. Cryst.
Growth Des. 2005, 5, 207. (d) Liu, C. S.; Wang, J. J.; Yan, L. F.;
Chang, Z.; Bu, X. H.; Sanudo, E. C.; Ribas, J. Inorg. Chem. 2007,
46, 6299. (e) Gu, X. J.; Xue, D. F. CrystEngComm. 2007, 9, 471.
(11) Pan, L.; Parker, B.; Huang, X. Y.; Oison, D. H.; Lee, J. Y.; Li, J.
J. Am. Chem. Soc. 2006, 128, 4180.
Experimental Section
Materials and Physical Measurements. All reagents used in
the syntheses were of analytical grade. Elemental analyses for
carbon, hydrogen, and nitrogen atoms were performed on a Vario
EL III elemental analyzer. The infrared spectra (4000∼400 cm-1
)
were recorded by using KBr pellets on an Avatar 360 E.S.P. IR
spectrometer. Thermogravimetric analyses (TG) were carried out
on a STA449C integration thermal analyzer. The powder X-ray
diffraction (PXRD) patterns were recorded with a Rigaku D/Max
(12) (a) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe,
M.; Yaghi, O. M. Science 2002, 295, 469. (b) Sharma, C. V. K.;
Rogers, R. D. Chem. Commun. 1999, 83. (c) Wang, Q. M.; Guo, G. C.;
Mak, T. C. W. Chem. Commun. 1999, 1849. (d) Wang, C. C.; Yang,
C. H.; Tseng, S. M.; Lee, G. H.; Chiang, Y. P.; Sheu, H. S. Inorg.
Chem. 2003, 42, 8294. (e) Wang, C. C.; Lin, H. W.; Yang, C. H.;
Liao, C. H.; Lan, I. T.; Lee, G. H. New J. Chem. 2004, 28, 180. (f)
Zhuang, W. J.; Zheng, X. J.; Li, L. C.; Liao, D. Z.; Ma, H.; Jin, L. P.
CrystEngComm. 2007, 9, 653.
(13) (a) Noro, S.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.;
Matsuzaka, H.; Yamashita, M. J. Am. Chem. Soc. 2002, 124, 2568.
(b) Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.;
Zaworotko, M. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 972. (c)
Carlucci, L.; Ciani, G.; Macchi, P.; Proserpio, D. M. Chem. Commun.
1998, 1837. (d) Huang, X. C.; Zhang, J. P.; Lin, Y. Y.; Yu, X. L.;
Chen, X. M. Chem. Commun. 2004, 1100.
916 Inorganic Chemistry, Vol. 48, No. 3, 2009