228
K.-J. Lu et al. / Tetrahedron 65 (2009) 225–231
20
Rf 0.35) to give 9a (90.0 mg, 0.23 mmol, 60%) as a light brown oil. [
a
]
500 MHz)
d
1.04 (s, 9H), 1.14 (d, 3H, J¼6.5 Hz), 1.17–1.24 (m, 2H),
D
ꢂ43.3 (c 1.99, CHCl3); 1H NMR (CDCl3, 500 MHz)
d
1.17 (d, 3H,
1.28–1.48 (m, 2H), 1.81–1.88 (m, 2H), 2.00 (s, 3H), 3.30 (s, 3H), 3.38
(t, 2H, J¼5.0 Hz), 3.51 (t, 2H, J¼5.0 Hz), 3.72 (s, 3H), 4.10–4.12 (m,
1H), 4.22 (t, 1H, J¼5.5 Hz), 4.53 (d, 1H, J¼7.0 Hz), 4.56 (d, 1H,
J¼7.0 Hz), 4.77–4.83 (m, 1H), 5.26–5.35 (m, 2H), 5.97 (dd, 1H, J¼16.0
and 1.5 Hz), 6.95 (dd, 1H, J¼16.0 and 5.5 Hz), 7.30–7.40 (m, 6H),
J¼6.5 Hz), 1.31–1.55 (m, 4H), 2.00 (s, 3H), 2.00–2.05 (m, 2H), 3.02 (d,
1H, J¼4.0 Hz), 3.36 (s, 3H), 3.52 (t, 2H, J¼4.5 Hz), 3.65–3.70 (m, 1H),
3.72 (s, 3H), 3.77–3.82 (m, 1H), 4.00–4.03 (m, 1H), 4.08–4.11 (m, 1H),
4.70 (d, 1H, J¼7.0 Hz), 4.75 (d, 1H, J¼7.0 Hz), 4.82–4.87 (m, 1H), 5.39
(dd, 1H, J¼15.0 and 6.5 Hz), 5.68–5.76 (m, 1H), 6.00 (dd, 1H, J¼16.0
and 1.5 Hz), 6.76 (dd, 1H, J¼16.0 and 6.0 Hz); 13C NMR (CDCl3,
7.59–7.66 (m, 4H); 13C NMR (CDCl3, 125 MHz)
d 19.3, 19.9, 21.4, 24.6,
26.9, 31.8, 35.2, 51.5, 58.9, 67.0, 70.8, 71.5, 75.3, 78.6, 94.4, 122.5,
127.4, 127.6, 128.0, 129.6, 129.8, 133.7, 133.8, 133.9, 135.9, 135.9,
145.2, 166.6, 170.7; IR (neat): 3052, 2930, 1731, 1245, 1111,
125 MHz) d 19.9, 21.3, 24.7, 32.0, 35.3, 51.7, 59.0, 67.8, 70.8, 71.7, 74.4,
80.1, 94.4, 123.4, 127.9, 134.6, 144.3, 166.2, 170.8; IR (neat): 3446 (br),
2937, 1730, 1653, 1247, 1023 cmꢂ1; HRMS (APCI) calcd for [MþNa]þ
(C19H32NaO8) 411.1995, found 411.1992.
1044 cmꢂ1
649.3173, found 649.3188.
;
HRMS (ESI) calcd for [MþNa]þ (C35H50NaO8Si)
4.6. (2E,6E)-(4R,5R,11S)-Methyl 11-acetoxy-5-hydroxy-4-
((2-methoxyethoxy)methoxy)-2,6-dodecadienoate (9b)
4.9. E-(4S,5R,11R)-Methyl 11-acetoxy-5-(tert-
butyldiphenylsilyloxy)-3-(butylthio)-4-((2-
methoxyethoxy)methoxy)-6-dodecenoate (11a)
The procedure to prepare 9a was followed. Starting with com-
pound 7 (100.0 mg, 0.38 mmol), p-cresol (20.0 mg, 0.19 mmol), (S)-
A
reaction mixture of 10a (489.0 mg, 0.78 mmol), 1,8-di-
8b (90.0 mg, 0.58 mmol) and Grubbs catalyst
4
(17.0 mg,
azabicyclo[4.3.0]undec-7-ene (DBU, 24.0 mg, 0.16 mmol), and 1-
butanethiol (211.0 mg, 2.34 mmol) was heated in a 80 ꢀC oil bath for
3 h. The excess reagents were removed under vacuum, and the
crude product was purified by column chromatography (SiO2,
EtOAc/hexanes, 1:3; Rf 0.46) to give 11a (491 mg, 0.69 mmol, 88%)
0.02 mmol), the diene 9b (90.0 mg, 0.23 mol, 60%) was prepared.
20
[a]
ꢂ29.9 (c 2.20, CHCl3); 1H NMR (CDCl3, 500 MHz)
d 1.15 (d, 3H,
D
J¼6.0 Hz), 1.28–1.56 (m, 4H), 1.98 (s, 3H), 2.00–2.05 (m, 2H), 3.08 (d,
1H, J¼3.5 Hz), 3.35 (s, 3H), 3.51 (t, 2H, J¼4.0 Hz), 3.63–3.68 (m, 1H),
3.70 (s, 3H), 3.76–3.81 (m,1H), 3.96–4.02 (m,1H), 4.06–4.11 (m,1H),
4.68 (d, 1H, J¼7.0 Hz), 4.73 (d, 1H, J¼7.0 Hz), 4.80–4.86 (m, 1H), 5.38
(dd, 1H, J¼16.5 and 8.0 Hz), 5.66–5.74 (m, 1H), 5.99 (dd, 1H, J¼16.0
and 1.5 Hz), 6.75 (dd, 1H, J¼16.0 and 6.0 Hz); 13C NMR (CDCl3,
as a colorless oil. 1H NMR (CDCl3, 500 MHz)
d
0.85 (t, 3H, J¼7.0 Hz),
1.00 and 1.03 (s, 9H), 1.13 (d, 3H, J¼6.5 Hz), 1.21–1.51 (m, 8H), 1.63–
1.80 (m, 2H), 1.99 (s, 3H), 2.33–2.50 (m, 2H), 2.33–2.50 and 2.70–
2.76 (m, 2H), 3.32 and 3.35 (s, 3H), 3.36–3.40 (m, 1H), 3.40–3.59 (m,
4H), 3.64 and 3.66 (s, 3H), 3.68–3.73 (m, 1H), 3.76–3.83 (m, 1H),
4.68 (d,1H, J¼7.0 Hz), 4.12 (d,1H, J¼7.0 Hz), 4.73–4.81 (m,1H), 5.19–
5.35 (m, 2H), 7.29–7.40 (m, 6H), 7.60–7.70 (m, 4H); 13C NMR (CDCl3,
125 MHz)
d 19.8, 21.3, 24.6, 31.9, 35.2, 51.6, 58.9, 67.7, 70.6, 71.6,
74.3, 80.0, 94.3, 123.3, 127.9, 134.5, 144.3, 166.2, 170.7; IR (neat):
3447 (br), 2916, 1727, 1247, 1022 cmꢂ1; HRMS (ESI) calcd for
[MþNa]þ (C19H32NaO8) 411.1995, found 411.1996.
125 MHz) d 13.7, 19.3, 19.9, 21.3, 21.9, 24.4, 27.0, 31.5, 31.7, 31.9, 35.4,
36.5, 41.8, 51.6, 59.0, 67.3, 70.8, 71.7, 75.5, 83.3, 96.8, 127.2, 127.3,
127.5, 127.5, 128.8, 129.5, 129.7, 133.5, 135.9, 136.0, 136.0, 136.1,
170.7, 172.5; HRMS (ESI) calcd for [MþNa]þ (C39H60NaO8SSi)
739.3676, found 739.3683.
4.7. (2E,6E)-(4R,5R,11R)-Methyl 11-acetoxy-5-(tert-
butyldiphenylsilyloxy)-4-((2-methoxyethoxy)methoxy)-2,6-
dodecadienoate (10a)
The solution of compound 9a (358.0 mg, 0.92 mmol) in
dichloromethane (8.3 mL) was added with tert-butyldiphenyl-
chlorosilane (506.8 mg, 1.84 mmol) and imidazole (188.0 mg,
2.77 mmol) at 0 ꢀC. The reaction mixture was refluxed for 16 h,
quenched with water (15 mL), and extracted with ether (15 mLꢁ3).
The combined organic layer was dried over Na2SO4, filtered and
concentrated. The crude product was purified by column chroma-
4.10. E-(4S,5R,11S)-Methyl 11-acetoxy-5-(tert-
butyldiphenylsilyloxy)-3-(butylthio)-4-((2-
methoxyethoxy)methoxy)-6-dodecenoate (11b)
The procedure to prepare 11a was followed. Starting with 10b
(784.0 mg, 1.25 mmol), DBU(38.0 mg, 0.25 mmol), and 1-butane-
thiol (339.0 mg, 3.76 mmol), compound 11b (872.0 mg, 1.22 mol,
tography (SiO2, EtOAc/hexanes, 1:3; Rf 0.46) to give 10a (539.0 mg,
97%) was harvested. 1H NMR (CDCl3, 500 MHz)
d 0.84 (t, 3H,
20
0.86 mmol, 93%) as a colorless oil. [
(CDCl3, 500 MHz)
a]
ꢂ2.9 (c 2.20, CHCl3); 1H NMR
J¼7.0 Hz), 1.00 and 1.03 (s, 9H), 1.13 and 1.11(d, 3H, J¼6.5 Hz), 1.25–
1.50 (m, 8H), 1.71–1.78(m, 2H), 1.99(s, 3H), 2.33–2.50 (m, 2H), 2.33–
2.50 and 2.70–2.76 (m, 2H), 3.32 and 3.35 (s, 3H), 3.35–3.40 (m, 1H),
3.40–3.60 (m, 4H), 3.64 and 3.66 (s, 3H), 3.69–3.71 (m, 1H), 3.77–
3.82 (m, 1H), 4.68 (d, 1H, J¼7.0 Hz), 4.81 (d, 1H, J¼7.0 Hz), 4.74–4.80
(m,1H), 5.19–5.34 (m, 2H), 7.29–7.40 (m, 6H), 7.61–7.70 (m, 4H); 13C
D
d
1.04 (s, 9H), 1.14 (d, 3H, J¼6.0 Hz), 1.15–1.22 (m,
2H), 1.29–1.47 (m, 2H), 1.81–1.89 (m, 2H), 2.00 (s, 3H), 3.30 (s, 3H),
3.38 (t, 2H, J¼5.0 Hz), 3.50 (t, 2H, J¼5.0 Hz), 3.72 (s, 3H), 4.08–4.12
(m, 1H), 4.22 (t, 1H, J¼5.5 Hz), 4.53 (d, 1H, J¼7.0 Hz), 4.56 (d, 1H,
J¼7.0 Hz), 4.77–4.83 (m, 1H), 5.27–5.33 (m, 2H), 5.97 (dd, 1H, J¼15.5
and 1.5 Hz), 6.95 (dd, 1H, J¼15.5 and 5.0 Hz), 7.30–7.42 (m, 6H),
NMR (CDCl3, 125 MHz)
d 13.7, 19.3, 19.9, 21.3, 21.9, 24.4, 27.0, 31.5,
7.60–7.67 (m, 4H); 13C NMR (CDCl3, 125 MHz)
d
19.3, 19.9, 21.4, 24.7,
31.7, 31.9, 35.4, 36.5, 41.8, 51.6, 59.0, 67.3, 70.7, 71.7, 75.5, 83.2, 96.8,
127.2,127.3,127.4,127.5,128.8,129.5,129.7,133.5,135.9,136.0,136.0,
136.0, 170.7, 172.5; HRMS (ESI) calcd for [MþNa]þ (C39H60NaO8SSi)
739.3676, found 739.3669.
27.0, 31.8, 35.3, 51.5, 59.0, 67.1, 70.8, 71.5, 75.4, 78.6, 94.4, 122.5,
127.4,127.6,128.1,129.6,129.8,133.7,133.7,133.9,135.9,136.0,145.3,
166.6, 170.7; IR (neat): 3071, 2933, 1730, 1245, 1111 cmꢂ1; HRMS
(ESI) calcd for [MþNa]þ (C35H50NaO8Si) 649.3173, found 649.3174.
4.11. (4S,5R,11R)-Methyl 11-acetoxy-5-(tert-
butyldiphenylsilyloxy)-3-(butylthio)-4-((2-
methoxyethoxy)methoxy)-dodecanoate (12a)
4.8. (2E,6E)-(4R,5R,11S)-Methyl 11-acetoxy-5-(tert-
butyldiphenylsilyloxy)-4-((2-methoxyethoxy)methoxy)-2,6-
dodecadienoate (10b)
The suspension of palladium (5% on activated carbon, 414 mg)
and compound 11a (491.0 mg, 0.69 mmol) in methanol (5 mL) was
stirred under hydrogen (1 atm) for 30 h. The suspension was
filtered, and the filtrate was concentrated to give 12a (432.0 mg,
The procedure to prepare 10a was followed. Starting with 9b
(615.0 mg, 1.58 mmol in 15 mL dichloromethane), tert-butyldiphe-
nylchlorosilane (871.0 mg, 3.17 mmol), and imidazole (323.0 mg,
4.75 mmol), compound 10b (850.0 mg, 1.36 mol, 86%) was pre-
0.60 mmol, 88%) as a colorless oil. 1H NMR (CDCl3, 500 MHz)
d
0.85
20
pared as a colorless oil. [
a
]
ꢂ7.6 (c 1.60, CHCl3); 1H NMR (CDCl3,
(t, 3H, J¼7.0 Hz), 1.02 (s, 9H), 1.02–1.05 (m, 3H), 1.18 (d, 3H,
D