ACS Catalysis
Research Article
Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.;
Wu, L.-Z. Org. Lett. 2014, 16, 1988−1991. (c) He, R.; Huang, Z.-T.;
Zheng, Q.-Y.; Wang, C. Angew. Chem., Int. Ed. 2014, 53, 4950−4953.
(9) (a) For a related C-P bond formation, see: Zhou, A.-X.; Mao, L.-
L.; Wang, G.-W.; Yang, S.-D. Chem. Commun. 2014, 50, 8529−8532.
(b) For a related S-S bond formation, see: Li, X.-B.; Li, Z.-J.; Gao, Y.-
J.; Meng, Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu, L.-Z. Angew.
Chem., Int. Ed. 2014, 53, 2085−2089.
the reaction mixture was shaken at 400 rpm for 6 h at 70 °C.
The reaction mixture was afterward suspended in petrol ether/
ethyl acetate (10:1) and subsequently purified by filtration over
silica gel.
ASSOCIATED CONTENT
■
S
* Supporting Information
The following files are available free of charge on the ACS
(10) Selected reviews about bimetallic catalysis: (a) Bratko, I.;
́
Gomez, M. Dalton Trans. 2013, 42, 10664−10681. (b) Shibasaki, M.;
Kanai, M.; Matsunaga, S.; Kumagai, N. Acc. Chem. Res. 2009, 42,
1117−1127. (c) Shibasaki, M.; Matsunaga, S. Chem. Soc. Rev. 2006, 35,
269−279. (d) van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998,
54, 12985−13011.
Experimental procedures, characterization data for all
Crystallographic information file for C23H27NO (CIF)
Crystallographic information file for C27H26O4 (CIF)
(11) Review about the application of imidazolines in asymmetric
catalysis: (a) Liu, H.; Du, D.-M. Adv. Synth. Catal. 2009, 351, 489−
519. Selected recent applications of bisimidazoline ligands not yet
covered in the review: (b) Nakamura, S.; Hyodo, K.; Nakamura, Y.;
Shibata, N.; Toru, T. Adv. Synth. Catal. 2008, 350, 1443−1448.
(c) Huang, H.; Peters, R. Angew. Chem., Int. Ed. 2009, 48, 604−606.
(d) Liu, H.; Du, D.-M. Adv. Synth. Catal. 2010, 352, 1113−1118.
(e) Cheng, L.; Dong, J.; You, J.; Gao, G.; Lan, J. Chem.Eur. J. 2010,
16, 6761−6765. (f) Ohara, M.; Nakamura, S.; Shibata, N. Adv. Synth.
Catal. 2011, 353, 3285−3289. (g) Hyodo, K.; Nakamura, S.; Tsuji, K.;
Ogawa, T.; Funahashi, Y.; Shibata, N. Adv. Synth. Catal. 2011, 353,
3385−3390. (h) Hyodo, K.; Nakamura, S.; Shibata, N. Angew. Chem.,
Int. Ed. 2012, 51, 10337−10341. (i) Hyodo, K.; Kondo, M.;
Funahashi, Y.; Nakamura, S. Chem.Eur. J. 2013, 19, 4128−4134.
(j) Nakamura, S.; Hyodo, K.; Nakamura, M.; Nakane, D.; Masuda, H.
Chem.Eur. J. 2013, 19, 7304−7309.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was financially supported by the Deutsche
Forschungsgemeinschaft (PE 818/6-1). The Fonds der
■
Chemischen Industrie (FCI) and the Landesgraduiertenforder-
̈
ung Baden-Wurttemberg are kindly acknowledged for Ph.D.
̈
fellowships to M.W. We thank Dr. Wolfgang Frey for the X-ray
crystal structure analyses of 6cA and 10.
(12) (a) Review on palladacycles: Dupont, J., Pfeffer, M., Eds.;
Palladacycles; Wiley-VCH: Weinheim, Germany, 2008. (b) Review
about ferrocene palladacycles in asymmetric catalysis: Richards, C. J.
In Chiral Ferrocenes in Asymmetric Catalysis; Dai, L.-X., Hou, X.-L.,
Eds.; Wiley-VCH: Weinheim, 2010; p 337.
(13) (a) Jautze, S.; Seiler, P.; Peters, R. Angew. Chem., Int. Ed. 2007,
46, 1260−1264. (b) Jautze, S.; Seiler, P.; Peters. Chem.Eur. J. 2008,
14, 1430−1444. (c) Jautze, S.; Diethelm, S.; Frey, W.; Peters, R.
Organometallics 2009, 28, 2001−2004.
REFERENCES
■
(1) (a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027−
3043. (b) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2010, 49, 9047−9050.
(2) (a) Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31−
44. (b) Heravi, M. M.; Hashemi, E.; Ghobadi, N. Curr. Org. Chem.
2013, 17, 2192−2224.
(14) Examples for catalytic applications: (a) Jautze, S.; Peters, R.
Angew. Chem., Int. Ed. 2008, 47, 9284−9288. (b) Weber, M.; Jautze, S.;
Frey, W.; Peters, R. J. Am. Chem. Soc. 2010, 132, 12222−12225.
(c) Weber, M.; Jautze, S.; Frey, W.; Peters, R. Chem.Eur. J. 2012, 18,
14792−14804. (d) Weber, M.; Frey, W.; Peters, R. Adv. Synth. Catal.
2012, 354, 1443−1449. (e) Weber, M.; Frey, W.; Peters, R. Angew.
Chem., Int. Ed. 2013, 52, 13223−13227. (f) Weber, M.; Klein, J. E. M.
N.; Miehlich, B.; Frey, W.; Peters, R. Organometallics 2013, 32, 5810−
5817. (g) Weber, M.; Frey, W.; Peters, R. Chem.Eur. J. 2013, 19,
8342−8351. (h) Eitel, S. H.; Jautze, S.; Frey, W.; Peters, R. Chem. Sci.
2013, 4, 2218−2233. (i) Sudheendran, M.; Eitel, S. H.; Naumann, S.;
Buchmeiser, M. R.; Peters, R. New J. Chem. 2014, 38, 5597−5607.
(15) Hellmuth, T.; Rieckhoff, S.; Weiss, M.; Dorst, K.; Frey, W.;
Peters, R. ACS Catal. 2014, 4, 1850−1858.
(3) Selected reviews: (a) Muzart, J. Tetrahedron 2005, 61, 4179−
4212. (b) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009−3066.
(4) Arylhalides can be replaced by aryldiazonium salts in Pd-catalyzed
couplings with allylic alcohols: (a) Werner, E. W.; Mei, T.-S.; Burckle,
A. J.; Sigman, M. S. Science 2012, 338, 1455−1458. (b) for a
computational study, see: Dang, Y.; Qu, S.; Wang, Z.-X.; Wang, X. J.
Am. Chem. Soc. 2014, 136, 986−998.
(5) (a) For a Pd-catalyzed oxidative cross-coupling of allylic alcohols
with N-tosylhydrazones, see also: Chen, H.; Huang, L.; Fu, W.; Liu,
X.; Jiang, H. Chem.Eur. J. 2012, 18, 10497−10500. (b) For a Pd-/
amine-catalyzed multiple relay catalysis towards chiral building blocks,
see also: Deiana, L.; Jiang, Y.; Palo-Nieto, C.; Afewerki, S.; Incerti-
́
Pradillos, C. A.; Verho, O.; Tai, C.-W.; Johnston, E. V.; Cordova, A.
(16) Weiss, M.; Frey, W.; Peters, R. Organometallics 2012, 31, 6365−
6372.
Angew. Chem., Int. Ed. 2014, 53, 3447−3451. and cited references (c)
For a sequential allylic alcohol oxidation/1,4-addition using gold-
palladium nanoclusters, see also: Yoo, W.-J.; Miyamura, H.;
Kobayashi, S. J. Am. Chem. Soc. 2011, 133, 3095−3103. (d) For an
oxidative Heck reaction using alkinyl-substituted anilines and allylic
alcohols, see: Wang, Q.; Huang, L.; Wu, X.; Jiang, H. Org. Lett. 2013,
15, 5940−5943.
(17) Selected reviews about indoles: (a) Edwankar, C. R.; Edwankar,
R. V.; Namjoshi, O. A.; Rallapalli, S. K.; Yang, J.; Cook, J. M. Curr.
Opin. Drug Discovery Dev. 2009, 12, 752−771. (b) Somei, M.; Yamada,
F. Nat. Prod. Rep. 2005, 22, 73−103. (c) Gribble, G. W. J. Chem. Soc.,
Perkin Trans. 1 2000, 1045−1075. (d) Sundberg, R. J. Indoles;
Academic Press: San Diego, 1996.
(6) (a) Shi, Z.; Boultadakis-Arapinis, M.; Glorius, F. Chem. Commun.
2013, 49, 6489−6491. (b) For an alternative oxidative method using
in situ generated indoles, see: Wang, Q.; Huang, L.; Wu, X.; Jiang, H.
Org. Lett. 2013, 15, 5940−5943. (c) For the use of propargylic
alcohols, see: Trost, B. M.; Breder, A. Org. Lett. 2011, 13, 398−401.
(7) Overview: He, K.-H.; Li, Y. ChemSusChem 2014, 7, 2788−2790.
(8) (a) Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.;
Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am.
Chem. Soc. 2013, 135, 19052−19055. (b) Zhong, J.-J.; Meng, Q.-Y.;
(18) The regioselectivity is complementary to the alkylation of
indoles reported by Glorius (ref 6a).
(19) Although nearly all AgOTs is consumed during the catalyst
activation and AgCl removed by filtration prior to catalysis, a control
experiment has been conducted under the conditions of Table 1/entry
7, in which a mixture of AgOTs (5 mol %) and Ni(OAc)2 (20 mol %)
was used as catalyst system. This resulted in the formation of only
traces of 6aA.
315
dx.doi.org/10.1021/cs501495g | ACS Catal. 2015, 5, 310−316