the completion of the reaction, the chiral auxiliary, nonre-
acted stereodiscriminated enantiomer, and triazine byproduct
were removed from the reacting mixture by the typical
washing procedure. It has been found that under these
conditions a high yield of HPLC pure acylated products was
obtained (see Table 1).
coupling, and workup procedure, we did not expect identical
ee’s to be obtained. The most divergent ee values were found
in coupling of alanine with sterically hindered substrates
(entries 27 (Leu), 30 (Ile), 36 (Aib), 40 (Leu)) and acylation
of less nucleophilic methanol (entries 13, 25, and 38). In
the latter case, the negative effects of lowered nucleophilicity
were suppressed by modification of reaction conditions and
using a less reactive component in large excess.
Nevertheless, enantiomeric enrichment after coupling with
9 in all cases gave very similar results within the range of
er 8/92 to er 1/99%. This documented that the departure of
the chiral auxiliary prior to the acylation of the nucleophile
consists a crucial advantage of 9 because this transformation
substantially eliminated the unpredictable diastereomeric
discriminations caused by the presence of an chiral auxiliary
in reacting molecules at the coupling stage and its influence
on the subsequent stages of the acylation process involving
the temporary creation of new stereogenic centers in the
tetrahedral intermediate.
The configuration and optical purity of isolated products
were established after hydrolytic degradation to amino acids
and the subsequent derivatization and separation of enanti-
omers by GC on a Chirasil Val capillary column. The
chromatographic data confirmed that the configuration of the
preferred enantiomer was identical in all the cases studied
and did not depend on the structure of the acylated amino
component, as it was anticipated. For N-protected aromatic
amino acids, i.e., phenylalanine and tyrosine (Table 1, entries
1-25) and N-protected serine (entries 51-52), in all the
experiments the L configuration was preferred. Moreover, it
has to be anticipated that in all other couplings involving
mentioned racemic N-protected amino acids and any kind
of acylated nucleophile the L enantiomer of carboxylic
component should be favored during activation, yielding a
final product with er in the range 0.5/99.5 to 3/97.
For N-protected alanine (entries 26-42), valine, leucine,
norleucine, and 2-aminoheptanoic acid, the D configuration
was preferred (entries 43-50). Considering adverse effects
such as unavoidable diastereoselection during acylation of
chiral nucleohiles, diversified reaction yields altering racemic
substrate/stereoselector ratio, and side reactions such as
participation of anhydrides, partial racemization during
Thus, the predictable configuration, comparable enantio-
meric purity, and convenient and highly resourceful prepara-
tive procedure confirm the efficiency of the presented
approach in the synthesis of enantiomerically enriched
peptides, amides, and esters of carboxylic acids from racemic
carboxylic components.
Acknowledgment. This study was supported by the Polish
State Committee for Scientific Research under Project PBZ-
KBN-126/T09/15.
Supporting Information Available: Full experimental
details and spectral data for all compounds described in Table
1. This material is available free of charge via the Internet
(5) (a) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481. (b) Sibi,
M. P.; Maneyem, S. Tetrahedron 2000, 56, 8033. (c) Copeland, G. T.; Jarvo,
E. R.; Miller, S. J. J. Org. Chem. 1998, 63, 6784. (d) Copeland, G. T.;
Miller, S. J. J. Am. Chem. Soc. 1999, 121, 4306. (e) Harris, R. F.; Nation,
A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2000, 122, 11270.
(f) Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J. Angew. Chem., Int. Ed.
2001, 40, 2824. (g) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane,
C. J. J. Am. Chem. Soc. 2004, 126, 12226.
OL802691X
(9) (a) Srseniyadis, S.; Valleix, A.; Wagner, A.; Mioskowski, C. Angew.
Chem., Int. Ed. 2004, 43, 3314. (b) Pelotier, B.; Priem, G.; Macdonald,
S. J. F.; Anson, M. S.; Upton, R. J.; Campbell, I. B. Tetrahedron Lett.
2005, 46, 9005. (c) Lewis, C. A.; Sculimbrene, B. R.; Xu, Y.; Miller, S. J.
Org. Lett. 2005, 7, 3021. (d) Birman, V. B.; Jiang, H.; Li, X. Org. Lett.
2007, 9, 3237. (e) Kosugi, Y.; Akakura, M.; Ishihara, K. Tetrahedron 2007,
63, 6191. (f) Stamatov, S. D. Stawinski. J. Org. Biomol. Chem. 2007, 5,
3787. (g) Karnik, A. V.; Kamath, S. S. J. Org. Chem. 2007, 72, 7435. (h)
Notte, G. T.; Sammakia, T.; Steel, P. J. J. Am. Chem. Soc. 2005, 127, 13502.
(i) Terakado, D.; Oriyama, T. Org. Synth. 2006, 83, 70. (j) Moretto, A.;
Peggion, C.; Formaggio, F.; Crisma, M.; Kaptein, B.; Broxterman, Q. B.;
Toniolo, C. Chirality 2005, 17, 481.
(6) Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351.
(7) (a) Wegler, R. Liebigs Ann. Chem. 1932, 498, 62. (b) Oriyama, T.;
Hori, Y.; Imai, K.; Sasaki, R. Tetrahedron Lett. 1996, 37, 8543. (c) Sano,
T.; Imai, K.; Ohashi, K.; Oriyama, T. Chem. Lett. 1999, 265. (d) Oriyama,
T.; Imai, K.; Sano, T.; Hosoya, T. Tetrahedron Lett. 1998, 39, 3529. (e)
Terakado, D.; Koutaka, H.; Oriyama, T. Tetrahedron: Asymmetry 2005,
16, 1157.
(8) (a) Vedejs, E.; Diner, S. T. J. Am. Chem. Soc. 1993, 115, 3358. (b)
Vedejs, E.; Bennett, N. S.; Conn, L. M.; Diver, S. T.; Gingras, M.; Lin, S.;
Oliver, P. A.; Peterson, M. J. J. Org. Chem. 1993, 58, 7286. (c) Bogatkov,
S. V.; Golovina, Z. P.; Fild, V. R.; Cherkasova, E. M. Zh. Org. Khim. 1977,
13, 2271. (d) MacNeil, P. A.; Roberts, N. K.; Bosnisch, B. J. Am. Chem.
Soc. 1981, 103, 2273. (e) Gladiali, S.; Dore, A.; Fabbri, D.; De Lucchi, O.;
Manassero, M. Tetrahedron: Asymmetry 1994, 5, 511. (f) Burk, M. J.;
Feaster, J. E.; Harlow, R. L. Tetrahedron: Asymmetry 1991, 2, 569. (g)
Vedejs, E.; Daugulis, O.; Harper, L. A.; MacKay, J. A.; Powell, D. R. J.
Org. Chem. 2003, 68, 5020. (h) MacKay, J. A.; Vedejs, E. J. Org. Chem.
2004, 69, 6934. (i) for review see Methot, J. L.; Roush, W. R. AdV. Synth.
Catal. 2004, 346, 1035.
(10) For in situ formation of chiral coupling reagents, see: Kaminski,
Z. J.; Kolesinska, B.; Kaminska, J. E.; Go´ra, J. J. Org. Chem. 2001, 66,
6276.
(11) Kaminski, Z. J. J. Prakt. Chem. 1990, 332, 579.
(12) Kaminski, Z. J.; Kolesinska, B.; Kolesinska, J.; Sabatino, G.; Chelli,
M.; Rovero, P.; Blaszczyk, M.; Glowka, M. L.; Papini, A. M. J. Am. Chem.
Soc. 2005, 127, 16912.
(13) Gawley, R. E. J. Org. Chem. 2006, 71, 2411.
768
Org. Lett., Vol. 11, No. 3, 2009