Organic Process Research & Development
Article
Kirschning, A. Flow Chemistry − A Key Enabling Technology for
(Multistep) Organic Synthesis. Adv. Synth. Catal. 2012, 354, 17.
(f) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.;
McQuade, D. T. Greener Approaches to Organic Synthesis Using
Microreactor Technology. Chem. Rev. 2007, 107, 2300. (g) Ley, S. V.
On Being Green: Can Flow Chemistry Help? Chem. Record 2012, 12,
378. (h) Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-Flow
TechnologyA Tool for the Safe Manufacturing of Active
Pharmaceutical Ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688.
(9) (a) Roberge, D. M.; Noti, C.; Irle, E.; Eyholzer, M.; Rittiner, B.;
Penn, G.; Sedelmeier, G.; Schenkel, B. Control of Hazardous
Processes in Flow: Synthesis of 2-Nitroethanol. J. Flow Chem. 2014,
4, 26. (b) Chentsova, A.; Ushakov, D. B.; Seeberger, P. H.; Gilmore,
K. Synthesis of α-Nitro Carbonyls via Nitrations in Flow. J. Org.
Chem. 2016, 81, 9415.
(10) Tsukanov, S. V.; Johnson, M. D.; May, S. A.; Rosemeyer, M.;
Watkins, M. A.; Kolis, S. P.; Yates, M. H.; Johnston, J. N.
Development of an Intermittent-Flow Enantioselective Aza-Henry
Reaction Using an Arylnitromethane and Homogeneous Brønsted
Acid−Base Catalyst with Recycle. Org. Process Res. Dev. 2016, 20, 215.
(11) (a) Feuer, H.; Lawrence, J. P. Alkyl nitrate nitration of active
methylene compounds. IX. Nitration of alkyl substituted heterocyclic
compounds. J. Org. Chem. 1972, 37, 3662. (b) Feuer, H.; Friedman,
H. Alkyl nitrate nitration of active methylene compounds. XI.
Nitration of toluenes. Facile preparation of stilbenes. J. Org. Chem.
1975, 40, 187. (c) Black, A. P.; Babers, F. H. Phenylnitromethane.
Org. Synth. 1939, 19, 73. (d) Hauser, F. H.; Baghdanov, V. M.
Convenient preparation of ring-methoxylated phenylnitromethanes. J.
Org. Chem. 1988, 53, 2872. (e) Kurz, M. E.; Ngoviwatchai, P.;
Tantrarant, T. Nitroalkylation of aromatic hydrocarbons promoted by
manganese(III) acetate. J. Org. Chem. 1981, 46, 4668. (f) Vogl, E. M.;
Buchwald, S. L. Palladium-Catalyzed Monoarylation of Nitroalkanes.
J. Org. Chem. 2002, 67, 106.
(12) Kornblum, N.; Larson, H. O.; Blackwood, R. K.; Mooberry, D.
D.; Oliveto, E. P.; Graham, G. E. A New Method for the Synthesis of
Aliphatic Nitro Compounds. J. Am. Chem. Soc. 1956, 78, 1497.
(13) Davis, T.; Vilgelm, A. E.; Richmond, A.; Johnston, J. N.
Preparation of (−)-Nutlin-3 Using Enantioselective Organocatalysis
at Decagram Scale. J. Org. Chem. 2013, 78, 10605.
(14) Walvoord, R. R.; Berritt, S.; Kozlowski, M. C. Palladium-
Catalyzed Nitromethylation of Aryl Halides: An Orthogonal
Formylation Equivalent. Org. Lett. 2012, 14, 4086.
(15) Vara, B.; Mayasundari, A.; Tellis, J.; Danneman, M.;
Arredondo, V.; Davis, T.; Min, J.; Finch, K.; Guy, R. K.; Johnston,
J. N. Organocatalytic, Diastereo- and Enantioselective Synthesis of
Nonsymmetric cis-Stilbene Diamines: A Platform for the Preparation
of Single-Enantiomer cis-Imidazolines for Protein−Protein Inhibition.
J. Org. Chem. 2014, 79, 6913.
(18) Vineyard, M. K.; Molson, R. L.; Budde, F. E.; Walton, J. R.
Continuous process for on-site and on-demand production of
aqueous peracetic acid. U.S. Patent 7,012,154, March 14, 2006.
(19) (a) Murphy, A.; Pace, A.; Stack, T. D. P. Ligand and pH
Influence on Manganese-Mediated Peracetic Acid Epoxidation of
Terminal Olefins. Org. Lett. 2004, 6, 3119. (b) Lokkesmoe, K. D.;
Oakes, T. R. Peroxy acid generator. U.S. Patent 5,122,538, June 16,
1992.
(21) Wang, Y.-W.; Liao, M.-S.; Shu, C.-M. Thermal hazards of a
green antimicrobial peracetic acid combining DSC calorimeter with
thermal analysis equations. J. Therm. Anal. Calorim. 2015, 119, 2257.
(22) Stoessel, F. In Thermal Safety of Chemical Processes; Wiley-
VCH: Weinheim, Germany, 2008; Chapter 3, p 68.
(23) Schmidt, C.; Sehon, A. H. The Thermal Decomposition of
Peracetic Acid in the Vapor Phase. Can. J. Chem. 1963, 41, 1819.
(24) White, T. D.; Alt, C. A.; Cole, K. P.; Groh, J. M.; Johnson, M.
D.; Miller, R. D. How to Convert a Walk-in Hood into a
Manufacturing Facility: Demonstration of a Continuous, High-
Temperature Cyclization to Process Solids in Flow. Org. Process Res.
(25) Abrams, M. L.; Buser, J. Y.; Calvin, J. R.; Johnson, M. D.; Jones,
B. R.; Lambertus, G. R.; Landis, C. R.; Martinelli, J. R.; May, S. A.;
McFarland, A. D.; Stout, J. R. Continuous Liquid Vapor Reactions
Part 2: Asymmetric Hydroformylation with Rhodium-Bisdiazaphos
Catalysts in a Vertical Pipes-in-Series Reactor. Org. Process Res. Dev.
2016, 20, 901.
(26) (a) Johnson, M. D.; May, S. A.; Calvin, J. R.; Lambertus, G. R.;
Kokitkar, P. B.; Landis, C. R.; Jones, B. R.; Abrams, M. L.; Stout, J. R.
Continuous Liquid Vapor Reactions Part 1: Design and Character-
ization of a Reactor for Asymmetric Hydroformylation. Org. Process
Res. Dev. 2016, 20, 888−900. (b) Johnson, M. D.; May, S. A.;
Haeberle, B.; Lambertus, G. R.; Pulley, S. R.; Stout, J. R. Design and
Comparison of Tubular and Pipes-in-Series Continuous Reactors for
Direct Asymmetric Reductive Amination. Org. Process Res. Dev. 2016,
20, 1305.
(27) (a) Gutmann, B.; Elsner, P.; Glasnov, T.; Roberge, D. M.;
Kappe, C. O. Shifting Chemical Equilibria in FlowEfficient
Decarbonylation Driven by Annular Flow Regimes. Angew. Chem.,
Int. Ed. 2014, 53, 11557. (b) Monfette, S.; Eyholzer, M.; Roberge, D.
M.; Fogg, D. E. Getting Ring-Closing Metathesis off the Bench:
Reaction-Reactor Matching Transforms Metathesis Efficiency in the
Assembly of Large Rings. Chem. - Eur. J. 2010, 16, 11720.
(28) Vara, B.; Mayasundari, A.; Tellis, J.; Danneman, M.;
Arredondo, V.; Davis, T.; Min, J.; Finch, K.; Guy, R. K.; Johnston,
J. N. Organocatalytic, Diastereo- and Enantioselective Synthesis of
Nonsymmetric cis-Stilbene Diamines: A Platform for the Preparation
of Single Enantiomer cis-Imidazolines for Protein-Protein Inhibition.
J. Org. Chem. 2014, 79, 6913.
(16) Emmons, W. D.; Pagano, A. S. Peroxytrifluoroacetic Acid. VI.
The Oxidation of Oximes to Nitroparaffins. J. Am. Chem. Soc. 1955,
77, 4557.
(17) Oxime oxidation has been evaluated using a broad range of
oxidants, often at elevated temperature. For peracids, see ref 16 and:
(a) Stiefel, J. Synthesis of 2-phenyl-1,3-propanediol. U.S. Patent
5,072,056, Dec 10, 1991. (b) Bose, D. S.; Vanajatha, G. A Versatile
Method for the Conversion of Oximes to Nitroalkanes. Synth.
Commun. 1998, 28, 4531. (c) Ballini, R.; Marcantoni, E.; Petrini, M.
Synthesis of functionalized nitroalkanes by oxidation of oximes with
urea-hydrogen peroxide complex and trifluoroacetic anhydride.
Tetrahedron Lett. 1992, 33, 4835. For perborate, see: (d) Manna,
M. S.; Mukherjee, S. Organocatalytic Enantioselective Formal
C(sp2)−H Alkylation. J. Am. Chem. Soc. 2015, 137, 130. For
hydrogen peroxide, see: (e) Cardona, F.; Soldaini, G.; Goti, A.
Methyltrioxorhenium-Catalyzed Oxidation of Aromatic Aldoximes.
Synlett 2004, 9, 1553. For molybdenum salts, see: (f) Ballistreri, F. P.;
Barbuzzi, E.; Tomaselli, G. A.; Toscano, R. M. Useful Oxidation
Procedure of Oximes to Nitro Compounds with Benz-Mo in
Acetonitrile. Synlett 1996, 1996, 1093.
G
Org. Process Res. Dev. XXXX, XXX, XXX−XXX