192
S. M. Hande, J. Uenishi / Tetrahedron Letters 50 (2009) 189–192
7. Wang, Z.-M.; Zhang, X.-L.; Sharpless, K. B.; Sinha, S. C.; Sinha-Bagchi, A.; Keinan,
E. Tetrahedron Lett. 1992, 33, 6407–6410.
ring that would allow easy access to the related natural products of
the biological importance. Synthesis of additional analogs, deter-
mination of the correct structure of aspergillide A,16 and their bio-
logical tests are in progress.
8. The unsatisfactory low chemical yield in methylenation is reminiscent of the
similar cases: Kapferer, T.; Brückner, R. Eur. J. Org. Chem. 2006, 2119–2133.
9. (a) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc.
2003, 125, 11360–11370; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem., Int. Ed. 2005, 44, 4490–4527.
10. (a) Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg. Chem.
2002, 2569–2586; (b) Sato, I.; Asakura, N.; Iwashita, T. Tetrahedron: Asymmetry
2007, 18, 2638–2642.
Acknowledgement
This work was supported by Grant-in-Aid for Scientific Re-
search on Priority Areas 17035084 and in part by the 21st COE Pro-
gram from the Ministry of Education, Culture, Sports, Science, and
Technology, Japan. We appreciate Professor Kusumi for discussing
the chemistry of asperigillides.
11. The metathesis reaction gave (E)-alkene exclusively.
12. Nishikawa, T.; Asai, M.; Isobe, M. J. Am. Chem. Soc. 2002, 124, 7847–7852.
13. For stereochemistry of corresponding alcohols see: (a) Takahata, H.; Yotsui, Y.;
Momose, T. Tetrahedron 1998, 54, 13505–13516; (b) Ramaswamy, S.;
Oehlschlager, A. C. Tetrahedron 1991, 47, 1157–1162; (c) Bussche-Hunnefeld,
J. L. V. D.; Seebach, D. Tetrahedron 1992, 48, 5719–5730; (d) Furstner, A.; Thiel,
O. R.; Ackermann, L. Org. Lett. 2001, 3, 449–451.
14. (a) Inanaga, J.; Hirata, K.; Saeki, H.; katsuki, T.; Yamaguchi, M. Bull. Chem. Soc.
Jpn. 1979, 52, 1989–1993; (b) Parenty, A.; Moreau, X.; Campagne, J.-M. Chem.
Rev. 2006, 106, 911–939.
Supplementary data
15. Compound 1; ½a D21
ꢂ
ꢁ 82:5 (c 0.16, CHCl3), ½a D20
ꢁ 90:0 (c 0.10, MeOH); Rf = 0.4
ꢂ
Supplementary data associated with this article can be found, in
(40% EtOAc in hexane); 1H NMR (400 MHz, C6D6) d 6.19 (dddd, 1H, J = 15.7,
10.8, 4.8, 1.8 Hz, H-9), 5.38 (br.dd, 1H, J = 15.7, 4.4 Hz, H-8), 5.09 (m, 1H, H-13),
4.30 (m, 1H, H-7), 4.08 (br.d, 1H, J = 11.3 Hz, H-3), 3.21 (br, 1H, H-4), 2.71 (dd,
1H, J = 13.7, 11.3 Hz, H-2), 2.12 (dd, 1H, J = 13.7, 1.8 Hz, H-2), 2.04 (dddd, 1H,
J = 13.3, 11.0, 4.9, 2.2 Hz), 1.86 (br, 1H), 1.78 (m, 1H), 1.74 (m, 1H), 1.61 (m, 1H),
1.55 (m, 1H), 1.52 (m, 1H), 1.37 (m, 1H), 1.34 (m, 1H), 1.31 (m, 1H), 1.07 (d, 3H,
J = 6.4 Hz), 0.99 (dddd, 1 H, J = 14.1, 4.8, 2.4, 1.2 Hz); 13C NMR (100 MHz, C6D6)
169.8, 138.2, 129.0, 71.5, 69.8, 69.5, 67.2, 39.9, 32.0, 30.7, 27.8, 25.3, 22.6, 19.1;
IR (film, cmꢁ1) 3431, 2927, 2854, 1732, 1454, 1259; MS (FAB) m/z 255 (M + H+).
HRMS calcd for C14H23O4 (M+H+): 255.1596: Found; m/z 255.1593. Compound
References and notes
1. Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. Org. Lett.
2008, 10, 225–228.
2. Examples of 14-Membered macrolides possessing a bridged tetrahydropyran
ring: (a) Wright, A. E.; Botelho, J. C.; Guzman, E.; Harmody, D.; Linley, P.;
McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. Nat. Prod. 2007, 70, 412–
416; (b) Zacuto, M. J.; Leighton, J. L. Org. Lett. 2005, 7, 5525–5527; (c) Vlattas, I.;
Harrison, I. T.; Tokes, L.; Fried, J. H.; Cross, A. D. J. Org. Chem. 1968, 33, 4176–
4179; (d) Prelog, V.; Gold, A. M.; Talbot, G.; Zamojski, A. Helv. Chim. Acta 1962,
2, 4–21.
2; ½a 2D3
ꢂ
ꢁ48.7 (c 0.16, CHCl3); Rf = 0.42 (40% EtOAc in hexane); 1H NMR
(300 MHz, CDCl3) d 6.47 (dddd, 1H, J = 15.3, 10.6, 4.4, 1.8 Hz, H-9), 5.61 (ddd,
1H, J = 15.3, 4.4, 1.2 Hz, H-8), 4.66 (ddq, 1H, J = 6.1, 6.1, 2.7 Hz, H-13), 4.53 (m,
1H, H-7), 4.10 (dt, 1H, J = 7.7, 1.3 Hz, H-3), 3.56 (br.d, 1H, J = 6.4 Hz, H-4), 2.54
(dd, 1H, J = 16.3, 7.9 Hz, H-2), 2.42 (dd, 1H, J = 16.3, 1.6 Hz, H-2), 2.03–2.22 (m,
3H), 1.92–2.05 (m, 2H), 1.84 (m, 2H), 1.76 (m, 1H), 1.71 (m, 1H), 1.43 (dddd,
1H, J = 14.3, 4.1, 2.8, 1.1 Hz), 1.29 (d, 3H, J = 6.4 Hz), 1.12 (dddd, 1H, J = 13.6, 4.2,
2.4, 1.3 Hz); 13C NMR (100 MHz, CDCl3) 172.7, 139.0, 126.9, 73.5, 72.1, 68.6,
68.6, 40.3, 33.2, 32.2, 27.3, 26.0, 22.5, 20.3; IR (film, cmꢁ1) 3425, 2924, 2854,
1724, 1454, 1262; MS (FAB) m/z 277 (M+Na+). HRMS calcd for C14H22O4Na
3. Some examples of macrolides possessing
a briged trans dihydro- and
tetrahydropyran rings: (a) Corley, D. G.; Herb, R.; Moore, R. E.; Scheuer, P. J.;
Paul, V. J. J. Org. Chem. 1988, 53, 3644–3645; (b) Jansen, R.; Kunze, B.;
Reichenbach, H.; Hofle, G. Eur. J. Org. Chem. 2000, 913–919; (c) Ambrosio, M.
D’.; Guerriero, A.; Debitus, C.; Pietra, F. Helv. Chim. Acta 1996, 79, 51–60.
4. (a) Uenishi, J.; Ohmi, M.; Ueda, A. Tetrahedron: Asymmetry 2005, 16, 1299–
1303; (b) Kawai, N.; Lagrange, J. M.; Ohmi, M.; Uenishi, J. J. Org. Chem. 2006, 71,
4530–4537; (c) Uenishi, J.; Vikhe, Y. S.; Kawai, N. Chem. Asian J. 2008, 3, 473–
484.
(M+Na+): 277.1416: Found; m/z 277.1412. Asperigillide A lit.; ½a 3D1
ꢁ59.5 (c
ꢂ
0.45, CHCl3).1 Asperigillide B lit.; ½a 3D1
ꢂ
ꢁ97.2 (c 0.27, MeOH).1
16. We are now anticipating that the structure of aspergillide A might possess cis
tetrahydropyran ring, which would be formed from 1 through ring-opening
and ring-closing steps by retro-O-Michael reaction and O-Michael reaction.
Based on this assumption, further efforts for the structural determination of
aspergillide A are under way by the synthesis.
5. (a) Uenishi, J.; Ohmi, M. Angew. Chem., Int. Ed. 2005, 44, 2756–2760; (b) Kawai,
N.; Hande, S. M.; Uenishi, J. Tetrahedron 2007, 63, 9049–9056.
6. Pak, C. S.; Lee, E.; Lee, G. H. J. Org. Chem. 1993, 58, 1523–1530.