404
R. Baati et al. / Tetrahedron Letters 50 (2009) 402–405
O
OCr(III)
OCr(III)
OMe
CrCl2
H3CO
RCHO
pathway a
O
H3CO
H3CO
R
OMe
H3CO
Cl
Cl
O
OCr(III)
29
O
30
Cr(III)
Cl
CrCl2
H3CO
R
OMe
31
1
OCH3
Cr(III)
28
OCr(III)
OMe
Cr(III)
Cr(III)
OCH3
pathway b
H3CO
RCHO
Cr(III)
32
33
O
R
O
OCr(III)
OCr(III)
MeO2C
H
MeO
H
CO2Me
OMe
H3CO
H3CO
R
31
R
R
OMe
OMe
(Z)-acrylate
Cr(III)
31a
Cr(III)
31b
(E)-acrylate
Figure 1. Mechanism for stereoselective Z-alkenoic ester formation.
5617–5620; (c) Bosch, J.; Salas, M.; Amat, M.; Alvarez, M.; Morgó, I.; Adrover, B.
Tetrahedron 1991, 47, 5269–5276; (d) Hanessian, S.; Ma, J.; Wang, W. J. Am.
Chem. Soc. 2001, 123, 10200–10206.
the selective transformations of an aromatic ketoaldehyde
(12?13, entry 6) and an aromatic bromide (14?15, entry 7).
It is noteworthy that aliphatic aldehydes like n-hexanal (16)
and hydrocinnamaldehyde (18) were well tolerated and led to
(Z)-acrylates 17 (entry 8) and 19 (entry 9), respectively, without
complications. Heterocyclic aldehyde furfural (20, entry 10) was
also a suitable substrate, and furnished the corresponding (Z)-acry-
late 21 in modest yield (69%) along with recovered starting mate-
2. (a) Duvelleroy, D.; Perrio, C.; Parisel, O.; Lasne, M.-C. Org. Biomol. Chem. 2005, 3,
3794–3804; (b) Waters, S. P.; Kozlowski, M. C. Tetrahedron Lett. 2001, 42, 3567–
3570; (c) Chen, B.-F.; Tasi, M.-R.; Yang, C.-Y.; Chang, J.-K.; Chang, N.-C.
Tetrahedron 2004, 60, 10223–10231; (d) Carrillo, N.; Davalos, E. A.; Russak, J. A.;
Bode, J. W. J. Am. Chem. Soc. 2006, 128, 1452–1453; (e) Gergely, J.; Morgan, J. B.;
Overman, L. E. J. Org. Chem. 2006, 71, 9144–9152; (f) Ireland, R. E.; Müller, R. H.;
Willard, A. K. J. Org. Chem. 1976, 41, 986–996; (g) Ireland, R. E.; Müller, R. H.;
Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868–2877; (h) Daniewski, A. R.;
Wojciechowska, W. Synthesis 1984, 132–134; (i) Weber, V.; Rubat, C.; Duroux,
E.; Lartigue, C.; Madesclaire, M.; Coudert, P. Bioorg. Med. Chem. 2005, 13, 4552–
4564; (j) Stork, G.; Tang, P. C.; Casey, M.; Goodman, B.; Toyota, M. J. Am. Chem.
Soc. 2005, 127, 16255–16262; (k) Fürstner, A.; Domostoj, M. M.; Scheiper, B. J.
Am. Chem. Soc. 2005, 127, 11620–11621; (l) Boiteau, J.-G.; Clary, L.; Chantalat,
L.; Rivier, M. WO 2007049158, 2007; Chem. Abstr. 2007, 146, 481812.
3. Farina, C.; Gagliardi, S.; Riccaboni, Maria T.; Parini, C.; Pinza, M.; Consolandi, E.
WO 9621638, 1996; Chem. Abstr., 1996, 125, 195194.
4. Helmboldt, H.; Hiersemann, M. Tetrahedron 2003, 59, 4031–4038.
5. Clark, R. C.; Pfeiffer, S. S.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 2587–
2593.
6. Deagostino, A.; Prandi, C.; Venturello, P. Org. Lett. 2003, 5, 3815–3817.
7. Seneci, P.; Leger, I.; Souchet, M.; Nadler, G. Tetrahedron 1997, 53, 17097–17114.
8. Houpis, I. N.; Patterson, L. E.; Alt, C. A.; Rizzo, J. R.; Zhang, T. Y.; Haurez, M. Org.
Lett. 2005, 7, 1947–1950.
9. Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1987, 28, 3039–
3042.
10. Fuchibe, K.; Iwasawa, N. Tetrahedron 2000, 56, 4907–4915.
11. Gabillet, S.; Lecerclé, D.; Loreau, O.; Dézard, S.; Gomis, J.-M.; Taran, F. Synthesis
2007, 515–522.
12. (a) Baati, R.; Barma, D. K.; Falck, J. R.; Mioskowski, C. J. Am. Chem. Soc. 2001, 123,
9196–9197; (b) Barma, D. K.; Baati, R.; Valleix, A.; Mioskowski, C.; Falck, J. R.
Org. Lett. 2001, 3, 4237–4238; (c) Barma, D. K.; Kundu, A.; Zhang, H.;
Mioskowski, C.; Falck, J. R. J. Am. Chem. Soc. 2003, 125, 3218–3219; (d) Baati,
R.; Mioskowski, C.; Barma, D. K.; Kache, R.; Falck, J. R. Org. Lett. 2006, 8, 2151–
2949.
rial (22%). Extension of the homologation procedure to
a,b-
unsaturated aldehydes (entries 11–13) was satisfactory in terms
of reactivity and stereoselectivity (Z/E ꢀ 97:3), although slightly
lower yields were obtained.
In concert with prior mechanistic studies,12,13 we propose that
reaction of 1 with CrCl2 initially generates 2-chloro-2-methoxy-
2-chromium carbenoid 28 (Fig. 1). Addition of this species to the
aldehyde results in a Reformatsky-type adduct 30 (pathway a),
which upon further reduction affords 31. Alternatively, pathway
b could also be invoked for the formation of the intermediate 31,
via the possible formation of a nucleophilic trioxo-vinylidene carb-
enoid 33. Subsequent anti-periplanar E2 elimination through the
less congested conformer 31a preferentially delivers Z-olefin. The
high selectivity observed for the a-methoxyacrylates might be as-
cribed to the high steric hindrance in conformer 31b, which favors
the elimination from the more stable conformer 31a predom-
inantly. At this stage of our investigations, the most probable path-
way a or b is not settled, and attempts to trap the intermediates are
underway in our laboratories.
In conclusion, we have demonstrated and established the scope
and the functional group compatibility of the stereospecific syn-
thesis of (Z)-a-methoxyacrylates via a CrCl2-promoted conden-
sation of methyl 2,2-dichloro-2-methoxy acetate with various
aldehydes. We believe that the modular strategy outlined here will
be a convenient general way to prepare this useful class of highly
functionalized, trisubstituted alkenes.
13. Falck, J. R.; Bejot, R.; Barma, D. K.; Bandyopadhyay, A.; Joseph, S.; Mioskowski,
C. J. Org. Chem. 2006, 71, 8178–8182.
14. The Z/E ratio was determined by quantitative integration of the vinyl proton of
both isomers in the 1H NMR of the crude reaction mixture. The stereochemistry
of the major Z acrylate was assigned by NOE experiments.
15. Procedure for the preparation of alkenoic ester 3: To a solution of methyl 2,2-
dichloro-2-methoxy acetate 1 (100 mg, 0.57 mmol) in dry THF (5 mL) was
added 4-methyl benzaldehyde
2 (69 mg, 0.57 mmol)) followed by CrCl2
(6 equiv). The mixture was allowed to stir at rt for 10 h. After completion of
the reaction (TLC), it was quenched with water (10 mL) and extracted with
ether (2 Â 25 mL). Combined organic layers were washed with brine, water,
and concentrated under reduced pressure to give crude product, which was
purified by silica gel column chromatography. Elution of the column with
cyclohexane/EtOAc (98/2) mixture gave desired alkenoic ester 3 (104 mg, 88%).
1H NMR (300 MHz, CDCl3) d 2.52 (s, 3H), 3.92 (s, 3H), 4.00 (s, 3H), 7.14 (s, 1H),
7.34 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H); 13C NMR (75 MHz, CDCl3) d 21.8,
52.5, 59.5, 124.3, 129.7, 130.1, 130.9, 139.7, 145.2, 165.4.; MS (EI) 206.1.
Spectral data for compound 5: 1H NMR (300 MHz, CDCl3) d 3.76 (s, 3H), 3.83 (s,
3H), 3.84 (s, 3H), 6.91 (d, J = 9.03 Hz, 2H), 6.98 (s, 1H), 7.72 (d, J = 8.43 Hz, 2H).;
13C NMR (75 MHz, CDCl3) d 52.4, 55.6, 59.4, 114.4, 124.6, 132.2, 144.2, 160.6,
165.5. Compound 7: 1H NMR (300 MHz, CDCl3) d 3.76 (s, 3H), 3.84 (s, 3H), 5.99
Acknowledgments
We thank the CNRS, the ANR (DK and SK fellowships), the
Robert A. Welch Foundation, and NIH (GM31278, DK38226) for
financial support.
References and notes
1. (a) Shigemori, H.; Miyoshi, E.; Shizuri, Y.; Yamamura, S. Tetrahedron Lett. 1989,
30, 6389–6392; (b) Estendorfer, S.; Ledl, F.; Severin, T. Tetrahedron 1990, 46,