asymmetric bifunctionalization conditions, and gave the
corresponding asymmetric porphyrins in good yields (entries
4–6). As expected, the reactions of other porphyrins 1c–e with
ethylisocyanate 6e proceeded smoothly to furnish the corres-
ponding meso-carbamoyl-substituted formylporphyrins 7cd,
7dd, and 7ed in 68–66% yields (entry 7–9).
3 For some examples of leading works on functionalization reactions
of porphyrins, see: (a) S. G. DiMagno, V. S.-Y. Lin and
M. J. Therien, J. Am. Chem. Soc., 1993, 115, 2513;
(b) S. G. DiMagno, V. S.-Y. Lin and M. J. Therien, J. Org. Chem.,
1993, 58, 5983; (c) R. W. Boyle, C. K. Johnson and D. Dolphin,
J. Chem. Soc., Chem. Commun., 1995, 527; (d) Y. Chen and
X. P. Zhang, J. Org. Chem., 2003, 68, 4432; (e) G. Y. Gao,
A. J. Colvin, Y. Chen and X. P. Zhang, Org. Lett., 2003, 5, 3261;
(f) G. Y. Gao, Y. Chen and X. P. Zhang, Org. Lett., 2004, 6, 1837;
(g) G. Y. Gao, A. J. Colvin, Y. Chen and X. P. Zhang, J. Org.
Chem., 2004, 69, 8886; (h) H. Hata, H. Shinokubo and A. Osuka,
J. Am. Chem. Soc., 2005, 127, 8264; (i) C. Liu, D.-M. Shen and
Q.-Y. Chen, J. Org. Chem., 2007, 72, 2732; (j) G.-Y. Gao,
J. V. Ruppel, D. B. Allen, Y. Chen and X. P. Zhang, J. Org. Chem.,
2007, 72, 9060; (k) Y. Matano, T. Shinokura, K. Matsumoto,
H. Imahori and H. Nakano, Chem.–Asian J., 2007, 2, 1417;
(l) S. Horn, N. N. Sergeeva and M. O. Senge, J. Org. Chem.,
2007, 72, 5414; (m) Y. Matano, K. Matsumoto, Y. Nakao, H. Uno,
S. Sakaki and H. Imahori, J. Am. Chem. Soc., 2008, 130, 4588.
4 (a) M. O. Senge, Acc. Chem. Res., 2005, 38, 733; (b) M. O. Senge,
S. S. Hatscher, A. Wiehe, K. Dahms and A. Kelling, J. Am. Chem.
Soc., 2004, 126, 13634; (c) K. Dahms, M. O. Senge and M. B. Bakar,
Eur. J. Org. Chem., 2007, 3833; (d) X. Feng and M. O. Senge,
Tetrahedron, 2000, 56, 587; (e) Y. M. Shaker and M. O. Senge,
Heterocycles, 2005, 65, 2441; and references cited therein.
5 We have reported several functionalization reactions of porphyrins:
(a) T. Takanami, M. Hayashi, F. Hino and K. Suda, Tetrahedron
Lett., 2003, 44, 7353; (b) T. Takanami, M. Hayashi, H. Chijimatsu,
W. Inoue and K. Suda, Org. Lett., 2005, 7, 3937; (c) T. Takanami,
A. Wakita, A. Sawaizumi, K. Iso, H. Onodera and K. Suda, Org.
Lett., 2008, 10, 685; (d) T. Takanami, M. Yotsukura, W. Inoue,
N. Inoue, F. Hino and K. Suda, Heterocycles, 2008, 76, 439.
6 Multi-step total syntheses of asymmetric bifunctionalized por-
phyrins that bear two different functional groups, such as acyl
and hydroxymethyl, borolanyl and alkynyl, vinyl and alkynyl, and
so on, at the meso-positions have been reported, see:
(a) T.-G. Zhang, Y. Zhao, I. Asselberghs, A. Persoons, K.
Clays and M. J. Therien, J. Am. Chem. Soc., 2005, 127, 9710;
(b) S. Shanmugathasan, C. K. Johnson, C. Edwards,
E. K. Matthews, D. Dolphin and R. W. Boyle, J. Porphyrins
Phthalocyanines, 2000, 4, 228; (c) M. Yeung, A. C. H. Ng, M. G.
B. Drew, E. Vorpagel, E. M. Breitung, R. J. McMahon and D. K.
P. Ng, J. Org. Chem., 1998, 63, 7143; (d) T. S. Balaban, A. D. Bhise,
M. Fischer, M. Linke-Schaetzel, C. Roussel and N. Vanthuyne,
Angew. Chem., Int. Ed., 2003, 42, 2140; (e) Z. Yao, J. Bhaumik,
S. Dhanalekshmi, M. Ptaszek, P. A. Rodriguez and J. S. Lindsey,
Tetrahedron, 2007, 63, 10657.
Although most of the reactions described above were
performed on a 0.1 mmol scale (see ESIw), they can easily be
scaled up if needed. For example, the reaction employing the
porphyrin 1a and the ethylisocyanate 6e as substrates can be
carried out on a 1 mmol scale under similar reaction condi-
tions, furnishing the desired porphyrin 7ae at 515 mg and in
92% yield, which is virtually the same yield as that on a
0.1 mmol scale (cf. Table 3, entry 4).
In summary, we have developed a novel and facile one-pot
procedure for the direct asymmetric bifunctionalization of
5,15-disubstituted free base porphyrins via a sequential SNAr
reaction with PyMe2SiCH2Li followed by acylation or related
reactions and oxidation. This simple one-pot procedure pro-
vides an efficient approach to the synthesis of a variety of
asymmetric free base porphyrins which bear a formyl group
and other chemically reactive functional groups, such as acyl,
alkoxycarbonyl, and carbamoyl functionalities, at the meso
positions in good yields. The operational simplicity as well as
the mild reaction conditions and the broad substrate scope
render this method attractive for the synthesis of more
complicated porphyrin derivatives, which could find potential
applications in areas such as catalysis, medicine, and mole-
cular recognition/sensing. Such studies are currently under
way in our laboratory, the results from which will be reported
in due course.
This work was supported by a Grant-in-Aid for Scientific
Research (KAKENHI) from JSPS and a Special Grant
(GAKUCHO-GRANT) from Meiji Pharmaceutical University.
Notes and references
1 The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and
R. Guilard, Academic Press, San Diego, 1999–2003, vol. 1–20.
2 We have developed porphyrin-based Lewis acid catalysts that can
promote regio- and stereoselective isomerization of epoxides to
carbonyl compounds and Claisen rearrangement of allylvinyl ethers,
see: (a) K. Suda, K. Baba, S. Nakajima and T. Takanami, Chem.
Commun., 2002, 2570; (b) K. Suda, T. Kikkawa, S. Nakajima and
T. Takanami, J. Am. Chem. Soc., 2004, 126, 9554; (c) T. Takanami,
M. Hayashi, F. Hino and K. Suda, Tetrahedron Lett., 2005, 46,
2893; (d) T. Takanami, M. Hayashi, K. Iso, H. Nakamoto and
K. Suda, Tetrahedron, 2006, 62, 9467.
7 Porphyrin modification based on the SNAr strategy with organo-
lithium reagents was pioneered by the research group of Senge.
They have widely applied the strategy to the preparation of
various asymmetric porphyrins bearing different alkyl and/or aryl
substituents at the meso positions, see ref. 4.
8 (a) K. Itami, K. Mitsudo and J. Yoshida, Tetrahedron Lett., 1999,
40, 5533; (b) K. Itami, K. Mitsudo and J. Yoshida, Tetrahedron
Lett., 1999, 40, 5537; (c) K. Itami, T. Kamei, K. Mitsudo,
T. Nokami and J. Yoshida, J. Org. Chem., 2001, 66, 3970.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 101–103 | 103