RSC Advances
Paper
determination were prepared by mixing a CH3OH solution. Materials (SKLSSM201629), and Open Project of State Key
Solvents for extraction and chromatography were of reagent Laboratory of Structural Chemistry (20140013) for funding this
grade.
work.
Synthetic procedure of 1a
Notes and references
Pentamer 7 (300 mg, 0.20 mmol) was hydrogenated in the
presence of 20% Pd/C (60 mg) in CHCl3/CH3OH (80 mL, v/v ¼
5 : 1) for 10 h at 40 ꢄC. The solution was ltered in darkness as
fast as possible followed by immediate removal of the solvent.
The reduced diamine 8 was used for the immediate coupling
reaction. DMF (5 uL) was added to a suspension of 5-(prop-2-yn-
1-yloxy)isophthalic acid 10 (58 mg, 0.20 mmol) and oxalyl
chloride (87.5 mg, 0.70 mmol) in CH2Cl2. The mixture was
stirred for 40 min at room temperature. The solvent was evap-
orated and the resulting residue was dried in vacuum at room
temperature for 30 min. The acid chloride 11 thus obtained was
dissolved in CH2Cl2 (60 mL) and added dropwise to a mixture of
8 and Et3N (162 mg, 1.60 mmol) in CH2Cl2 (20 mL) at 0 ꢄC. The
solution was stirred under N2 for 7 h. The organic layer was
washed with water (20 mL ꢁ 3) and dried over anhydrous
Na2SO4 and ltered. The crude product was puried by chro-
matography on silica gel (CH2Cl2/MeOH ¼ 20 : 1) to provide the
1 T. W. Bell and V. J. Santora, J. Am. Chem. Soc., 1992, 114,
8300.
2 M. T. Cushion, P. D. Walzer, M. S. Collins, S. Rebholz,
J. J. Vanden Eynde, A. Mayence and T. L. Huang,
Antimicrob. Agents Chemother., 2004, 48, 4209.
¨
3 (a) T. Grawe, G. Schafer and T. Schrader, Org. Lett., 2003, 5,
1641; (b) S. Rudra and A. V. Eliseev, J. Am. Chem. Soc.,
1998, 120, 11543; (c) S. C. Zimmerman, Y. Wang,
P. Bharathi and J. S. Moore, J. Am. Chem. Soc., 1998, 120,
2172; (d) A. Kra and A. Reichert, Tetrahedron, 1999, 55,
3923; (e) A. Kra, L. Peters and H. R. Powell, Tetrahedron,
2002, 58, 3499.
4 T. Schrader and M. Maue, in Functional Synthetic Receptors,
ed. T. Schrader and A. D. Hamilton, Wiley, Weinheim,
2005, p. 111.
5 (a) J. Scheerder, J. P. M. van Duynhoven, J. F. J. Engbersen
and D. N. Reinhoudt, Angew. Chem., Int. Ed., 1996, 35,
1090; (b) P. D. Beer, P. Hopkins and J. McKinney, Chem.
Commun., 1999, 13, 1253; (c) S. G. Galbraith, P. G. Plieger
and P. A. Tasker, Chem. Commun., 2002, 22, 2662; (d)
P. R. Webber and P. D. Beer, Dalton Trans., 2003, 22, 2249;
(e) C. C. Tong, R. Quesada, J. L. Sessler and P. A. Gale,
Chem. Commun., 2008, 47, 6321; (f) P. A. Gale, Chem. Soc.
1
product 1a as a white solid (241 mg, 73%). HNMR (400 MHz,
CDCl3, 298 K) (ppm): 10.19 (s, 2H), 9.14 (s, 4H), 9.16 (s, 2H), 9.14
(s, 1H), 8.51 (d, 2H, J ¼ 12 Hz), 8.28 (s, 1H), 8.20 (s, 2H), 7.80 (s,
2H), 7.02 (d, 2H, J ¼ 8 Hz), 6.50 (s, 3H), 4.79 (s, 2H), 4.10 (d, 8H, J
¼ 10 Hz), 3.91 (d, 12H, J ¼ 16 Hz), 2.25 (t, 1H, J ¼ 4 Hz), 1.54–
1.26 (m, 74H), 0.94–0.86 (m, 24H); 13C NMR (101 MHz, CDCl3,
298 K): d 164.55, 163.18, 162.38, 159.92, 159.72, 153.40, 145.87,
135.19, 132.31, 124.98, 124.25, 122.13, 120.92, 118.95, 117.90,
117.81, 112.81, 94.58, 77.22, 72.45, 72.29, 55.89, 55.50, 38.52,
37.86, 31.87, 30.96, 30.35, 30.06, 29.72, 29.72, 29.59, 29.35,
29.08, 28.65, 26.72, 26.38, 23.44, 23.15, 23.09, 22.67, 14.13,
10.35, 10.32; MALDI-TOF MS (m/z) calcd for C97H136N6O15 [M +
Na]+ 1647.996, found [M + Na]+ 1647.900.
˜
´
Rev., 2010, 39, 3746; (g) S. K. Kim, G. I. Vargas-Zuniga,
B. P. Hay, N. J. Young, L. H. Delmau, C. Masselin,
C.-H. Lee, J. S. Kim, V. M. Lynch, B. A. Moyer and
J. L. Sessler, J. Am. Chem. Soc., 2012, 134, 1782; (h)
M. Yano, C. C. Tong, M. E. Light, F. P. Schmidtchen and
P. A. Gale, Org. Biomol. Chem., 2010, 8, 4356; (i)
X. D. Wang, S. Li, Y. F. Ao, Q. Q. Wang, Z. T. Huang and
D. X. Wang, Org. Biomol. Chem., 2016, 14, 330.
Instruments and apparatus
6 (a) M. A. Hossain and H.-J. Schneider, J. Am. Chem. Soc.,
1998, 120, 11208; (b) H. Tsukube, M. Wada, S. Shinoda and
H. Tamiaki, Chem. Commun., 1999, 11, 1007; (c) A. P. Silva,
1H and13C NMR spectra were recorded on Bruker AVANCE AV II-
400 MHz (1H: 400 MHz; 13C: 100 MHz) (Karlsruhe, Germany).
High resolution mass spectra (HR-MS) data were collected by
WATERS Q-TOF Premier (California, USA). UV-vis spectra were
measured by SHIMADZU UV-2450 (Tokyo, Japan). Chemical
shis are reported in d values in ppm using tetramethlysilane
(TMS). HR-MS data were obtained by WATERS Q-TOF Premier.
The geometry optimizations were carried out in gas phase by
employing the Gaussian09 program. Fourier transform infrared
(FT-IR) data were collected by a Thermo Nicolet NEXUS 670 FT-
IR spectrophotometer. MALDI-TOF MS spectra were recorded
on Bruker Autoex III MS spectrometer.
´
H. Nimala Gunaratne, E. Glenn and R. Pamela, Chem.
Commun., 1996, 18, 2191.
7 (a) T. Yu and R. G. Weiss, Green Chem., 2012, 14, 209; (b)
R. Talhout and J. B. Engberts, Org. Biomol. Chem., 2004, 2,
3071; (c) A. Clark, T. Hemmelgarn, L. Danziger-Isakov and
A. Teusink, Pediatr. Transplant., 2015, 19, 326; (d)
P. A. Nguewa, M. A. Fuertes, V. Cepeda, S. Iborra,
´
´
J. Carrion, B. Valladares, C. Alonso and J. M. Perez, Chem.
Biodiversity, 2005, 2, 1387.
8 For selected reviews, see: (a) D.-W. Zhang, X. Zhao, J.-L. Hou
and Z.-T. Li, Chem. Rev., 2012, 112, 5271; (b) K. Yamato,
M. Kline and B. Gong, Chem. Commun., 2012, 48, 12142; (c)
B. Gong and Z. F. Shao, Acc. Chem. Res., 2013, 46, 2856; (d)
H. L. Fu, Y. Liu and H. Q. Zeng, Chem. Commun., 2013, 49,
4127.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (21172158 and 21572143), the Doctoral Program of the
Ministry of Education of China (20130181110023), Open Project
of State Key Laboratory of Supramolecular Structure and
9 (a) A. R. Sanford, L. H. Yuan, W. Feng, K. Yamato,
R. A. Flowers and B. Gong, Chem. Commun., 2005, 37, 4720;
39844 | RSC Adv., 2016, 6, 39839–39845
This journal is © The Royal Society of Chemistry 2016