1434
Russ.Chem.Bull., Int.Ed., Vol. 57, No. 7, July, 2008
Budyka et al.
Skopenko, Ukr. Khim. Zh. [Ukr. Chem. J.], 1984, 50, 296
(in Russian).
10. M. F. Budyka, T. S. Zyubina, J. Mol. Struct. (Theochem.), 1997,
419, 191.
11. M. F. Budyka, T. S. Zyubina, M. M. Kantor, Zh. Fiz.
Khim., 2000, 74, 1115 [Russ. J. Phys. Chem., 2000, 74, 995
(Engl. Transl.)].
12. M. F. Budyka, I. V. Oshkin, J. Mol. Struct. (Theochem.), 2006,
759, 137.
tuted aminophenol. It is noteworthy that the formation of
this compound is almost independent of the presence of
oxygen (see Table 2), namely, different compounds with
the same m/z value can probably form under different
conditions.
On the whole, the formation of all identified products
in the photolysis of azidohemicyanine 1 can be explained
by the reactions of the triplet nitrene21 (Scheme 1).
Thus, our studies confirmed the predicted photoꢀ
chemical activity of azides with positively charged conjuꢀ
gated πꢀsystem including at most eighteen electrons. Aziꢀ
dohemicyanine (4ꢀ(4ꢀazidostyryl)ꢀ1ꢀmethylquinolinium
iodide) was synthesized for the first time. The compound
has a LWAB in the region 350—500 nm and decomposes
with a quantum yield of 0.84 0.17 irrespective of the
presence of oxygen on exposure to light within the LWAB.
Among the known aromatic azides, the azidohemicyaꢀ
nine possesses the longestꢀwavelength visible light sensiꢀ
tivity and is characterized by the high quantum yield of
photodissociation of the azido group.
13. M. F. Budyka, N. V. Biktimirova, T. N. Gavrishova, V. I.
Kozlovskii, Mendeleev Commun., 2007, 17, 3.
14. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 208, 221.
15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchꢀ
ian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,
J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox,
T. Keith, M. A. AlꢀLaham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.02,
Gaussian Inc., Pittsburgh, PA, 2003.
The authors are grateful to A. G. Ryabenko for proꢀ
viding the program for analysis of spectral data by the
method of principal components.
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 03ꢀ03ꢀ32116).
References
16. A. F. Dodonov, V. I. Kozlovski, I. V. Soulimenkov, V. V.
Raznikov, A. V. Loboda, Z. Zhen, T. Horwath, H. Wollnik,
Eur. J. Mass Spectrom., 2000, 6, 481.
17. Svoistva organicheskikh soedinenii. Spravochnik, pod red. A. A.
Potekhina, Khimiya, Moscow, 1984, 520 pp. (in Russian).
18. M. F. Budyka, N. V. Biktimirova, T. N. Gavrishova, Khim. Vys.
Energ., 2007, 41, 115 [High Energy Chem., 2007, 41, 84
(Engl. Transl.)].
19. A. G. Ryabenko, E. E. Faingol´d, E. N. Ushakov, N. M.
Bravaya, Izv. Akad. Nauk. Ser. Khim., 2005, 2257 [Russ. Chem.
Bull., Int. Ed., 2005, 54, 2330].
20. L. K. Gallos, E. Stathatos, P. Lianos, P. Argyrakis, Chem. Phys.,
2002, 275, 253.
1. U. Henriksen, O. Buchardt, P. E. Nielsen, J. Photochem. Photoꢀ
biol. A: Chem., 1991, 57, 331.
2. R. S. Pandurangi, R. R. Kuntz, W. A. Volkert, Appl. Radiat.
Isotopes, 1995, 46, 233.
3. M. J. Bouchet, M. Goeldner, Photochem. Photobiol., 1997,
65, 195.
4. R. Rajagopalan, G. Cantrell, S. I. Achilefu, J. E. Bugai, R. B.
Dorshow, US Pat. 2004/0180864.
5. N. P. Gritsan, A. A. Koshkin, A. Yu. Denisov, Yu. Ya.
Markushin, E. V. Cherepanova, A. V. Lebedev, J. Photochem.
Photobiol. B: Biol., 1997, 37, 40.
6. M. F. Budyka, N. V. Biktimirova, T. N. Gavrishova, Khim. Vys.
Energ., 2006, 40, 208 [High Energy Chem., 2006, 40, 170
(Engl. Transl.)].
7. M. F. Budyka, M. M. Kantor, R. M. Fatkulbayanov, Khim.
Geterotsikl. Soedin., 1997, 1504 [Chem. Heterocycl. Compd.,
1997, 33 (Engl. Transl.)].
8. M. F. Budyka, N. V. Biktimirova, T. N. Gavrishova, O. D.
Laukhina, Izv. Akad. Nauk. Ser. Khim., 2005, 2655 [Russ.
Chem. Bull., Int. Ed., 2005, 54, 2746].
21. Azides and Nitrenes. Reactivity and Utility, Ed. E. F. V. Scriven,
Academic Press, New York, 1984.
22. M. F. Budyka, M. M. Kantor, M. V. Alfimov, Usp. Khim., 1992,
61, 48 [Russ. Chem. Rev., 1992, 61 (Engl. Transl.)].
23. M. F. Budyka, N. V. Biktimirova, T. N. Gavrishova, V. I.
Kozlovskii, Khim. Vys. Energ., 2007, 41, 305 [High Energy
Chem., 2007, 41, 261 (Engl. Transl.)].
9. V. Ya. Pochinok, V. A. Smirnov, S. B. Brichkin, L. F. Avramenꢀ
ko, L. I. Tyltina, T. F. Grigorenko, I. A. Ol´shevskaya, V. N.
Received May 31, 2007;
in revised form June 4, 2007