Page 3 of 4
ChemComm
DOI: 10.1039/C5CC01632K
that we reported previously.10 Deuterium labelling experiments
point to a major pathway involving formate decarboxylation,
hydride insertion into olefins and protonation of resulting nickel
enolates.
70
75
80
13168; (d) hydroboration: L. Zhang, Z. Zuo, X. Wan and Z. Huang, J.
Am. Chem. Soc., 2014, 136, 15501.
8 Examples: (a) A. H. Vetter and A. Berkessel, Synthesis, 1995, 419; (b)
I. M. Angulo, A. M. Kluwer and E. Bouwman, Chem. Commun., 1998,
2689; (c) I. M. Angulo and E. Bouwman, J. Mol. Catal. A: Chem.,
2001, 175, 65; (d) S. Kuhl, R. Schneider and Y. Fort, Organometallics,
2003, 22, 4184; (e) A. L. Iglesias and J. J. Garcia, J. Mol. Catal. A,
2009, 298, 51; (f) W. H. Harman and J. C. Peters, J. Am. Chem. Soc.,
2012, 134, 5080; (g) K. V. Vasudevan, B. L. Scott and S. K. Hanson,
Eur. J. Inorg. Chem., 2012, 4898; (h) J. Wu, J. W. Faller, N. Hazari and
T. J. Schmeier, Organometallics, 2012, 31, 806; (i) T.-P. Lin and J. C.
Peters, J. Am. Chem. Soc., 2014, 136, 13672.
5
We thank Singapore GSK-EDB green and sustainable
manufacturing award and Nanyang Technological University for
financial support.
Notes and references
9 (a) Y. Hamada, Y. Koseki, T. Fujii, T. Maeda, T. Hibino and K.
Makino, Chem. Commun., 2008, 6206; (b) T. Hibino, K. Makino, T.
Sugiyama and Y. Hamada, ChemCatChem, 2009, 1, 237.
10 Division of Chemistry and Biological Chemistry
School of Physical and Mathematical Sciences
85 10 (a) P. Yang, H. Xu and J. Zhou, Angew. Chem. Int. Ed., 2014, 53,
12210; (b) H. Xu, P. Yang, P. Chuanprasit, H. Hirao and J. Zhou,
Angew. Chem. Int. Ed., 2015, DOI: 10.1002/anie.201501018.
11 (a) B. Loges, A. Boddien, F. Gärtner, H. Junge and M. Beller, Top.
Catal., 2010, 53, 902; (b) A. Boddien, F. Gärtner, C. Federsel, P.
Nanyang Technological University, 21 Nanyang Link, Singapore 637371
Fax: (+65) 67911961; E-mail: jrzhou@ntu.edu.sg
† Electronic Supplementary Information (ESI) available: Experimental
15 procedures and characterization of isolated products. See
DOI: 10.1039/b000000x/
90
Sponholz, D. Mellmann, R. Jackstell, H. Junge and M. Beller, Angew.
Chem. Int. Ed., 2011, 50, 6411; (c) M. Grasemann and G. Laurenczy,
Energy Environ. Sci., 2012, 5, 8171; (d) A. F. Dalebrook, W. Gan, M.
Grasemann, S. Moret and G. Laurenczy, Chem. Commun., 2013, 49,
8735.
1 (a) W. S. Knowles, Angew. Chem. Int. Ed., 2002, 41, 1998; (b) R.
Noyori, Adv. Synth. Catal., 2003, 345, 15; (c) W. Tang and X. Zhang,
20
25
30
35
40
45
Chem. Rev., 2003, 103, 3029; (d) I. D. Gridnev and T. Imamoto, Acc.
Chem. Res., 2004, 37, 633; (e) X. Cui and K. Burgess, Chem. Rev.,
2005, 105, 3272; (f) V. Farina, J. T. Reeves, C. H. Senanayake and J. J.
Song, Chem. Rev., 2006, 106, 2734; (g) N. B. Johnson, I. C. Lennon, P.
H. Moran and J. A. Ramsden, Acc. Chem. Res., 2007, 40, 1291; (h) A.
J. Minnaard, B. L. Feringa, L. Lefort and J. G. De Vries, Acc. Chem.
Res., 2007, 40, 1267; (i) S. J. Roseblade and A. Pfaltz, Acc. Chem. Res.,
2007, 40, 1402; (j) L. A. Saudan, Acc. Chem. Res., 2007, 40, 1309; (k)
H. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo and T. Saito, Acc.
Chem. Res., 2007, 40, 1385; (l) W. Zhang, Y. Chi and X. Zhang, Acc.
Chem. Res., 2007, 40, 1278; (m) D. J. Ager, A. H. M. de Vries and J. G.
de Vries, Chem. Soc. Rev., 2012, 41, 3340; (n) H.-U. Blaser, B. Pugin
and F. Spindler, Top. Organometal. Chem., 2012, 1; (o) J. J. Verendel,
O. Pàmies, M. Diéguez and P. G. Andersson, Chem. Rev., 2013, 114,
2130; (p) J.-P. Genet, T. Ayad and V. Ratovelomanana-Vidal, Chem.
Rev., 2014, 114, 2824.
2 Examples: (a) R. Hoen, J. A. F. Boogers, H. Bernsmann, A. J.
Minnaard, A. Meetsma, T. D. Tiemersma-Wegman, A. H. M. de Vries,
J. G. de Vries and B. L. Feringa, Angew. Chem. Int. Ed., 2005, 44,
4209; (b) W. Chen, P. J. McCormack, K. Mohammed, W. Mbafor, S.
M. Roberts and J. Whittall, Angew. Chem. Int. Ed., 2007, 46, 4141; (c)
K. Dong, Y. Li, Z. Wang and K. Ding, Angew. Chem. Int. Ed., 2013,
52, 14191; (d) Y. Li, K. Dong, Z. Wang and K. Ding, Angew. Chem.
Int. Ed., 2013, 52, 6748.
3 Examples: (a) T. Ohta, H. Takaya, M. Kitamura, K. Nagai and R.
Noyori, J. Org. Chem., 1987, 52, 3174; (b) T. Uemura, X. Zhang, K.
Matsumura, N. Sayo, H. Kumobayashi, T. Ohta, K. Nozaki and H.
Takaya, J. Org. Chem., 1996, 61, 5510; (c) X. Cheng, Q. Zhang, J.-H.
Xie, L.-X. Wang and Q.-L. Zhou, Angew. Chem. Int. Ed., 2005, 44,
1118.
50 4 Examples: (a) W. Tang, W. Wang and X. Zhang, Angew. Chem. Int.
Ed., 2003, 42, 943; (b) S. Li, S.-F. Zhu, C.-M. Zhang, S. Song and Q.-
L. Zhou, J. Am. Chem. Soc., 2008, 130, 8584; (c) W.-J. Lu, Y.-W. Chen
and X.-L. Hou, Angew. Chem. Int. Ed., 2008, 47, 10133; (d) J. Zhao
and K. Burgess, J. Am. Chem. Soc., 2009, 131, 13236; (e) Angew.
95 12 (a) B. Loges, A. Boddien, H. Junge and M. Beller, Angew. Chem. Int.
Ed., 2008, 47, 3962; (b) T. C. Johnson, D. J. Morris and M. Wills,
Chem. Soc. Rev., 2010, 39, 81; (c) A. Boddien, D. Mellmann, F.
Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig
and M. Beller, Science, 2011, 333, 1733; (d) J. F. Hull, Y. Himeda, W.-
100
H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman and
E. Fujita, Nat. Chem., 2012, 4, 383; (e) Y. Maenaka, T. Suenobu and S.
Fukuzumi, Energy Environ. Sci., 2012, 5, 7360; (f) J. H. Barnard, C.
Wang, N. G. Berry and J. Xiao, Chem. Sci., 2013, 4, 1234; (g) E. A.
Bielinski, P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C. Würtele, W. H.
Bernskoetter, N. Hazari and S. Schneider, J. Am. Chem. Soc., 2014,
136, 10234.
13 (a) R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97; (b) R.
Kadyrov and T. H. Riermeier, Angew. Chem. Int. Ed., 2003, 42, 5472;
(c) T. Ikariya and A. J. Blacker, Acc. Chem. Res., 2007, 40, 1300; (d) C.
Wang, C. Li, X. Wu, A. Pettman and J. Xiao, Angew. Chem. Int. Ed.,
2009, 48, 6524; (e) J.-i. Ito and H. Nishiyama, Tetrahedron Lett., 2014,
55, 3133.
14 (a) A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert and A.
Tijani, J. Am. Chem. Soc., 1994, 116, 4062; (b) T. Imamoto, J.
Watanabe, Y. Wada, H. Masuda, H. Yamada, H. Tsuruta, S.
Matsukawa and K. Yamaguchi, J. Am. Chem. Soc., 1998, 120, 1635; (c)
D. Liu, W. Tang and X. Zhang, Org. Lett., 2004, 6, 513; (d) T.
Imamoto, K. Tamura, Z. Zhang, Y. Horiuchi, M. Sugiya, K. Yoshida,
A. Yanagisawa and I. D. Gridnev, J. Am. Chem. Soc., 2011, 134, 1754.
105
110
115
120 15 W. Tang, W. Wang, Y. Chi and X. Zhang, Angew. Chem. Int. Ed.,
2003, 42, 3509.
16 Y. Tsuchiya, Y. Hamashima and M. Sodeoka, Org. Lett., 2006, 8,
4851.
17 Examples: (a) J. M. Brown and P. A. Chaloner, J. Chem. Soc., Chem.
125
130
Commun., 1980, 344; (b) A. S. C. Chan, J. J. Pluth and J. Halpern, J.
Am. Chem. Soc., 1980, 102, 5952; (c) R. Giernoth, H. Heinrich, N. J.
Adams, R. J. Deeth, J. Bargon and J. M. Brown, J. Am. Chem. Soc.,
2000, 122, 12381; (d) I. D. Gridnev, N. Higashi, K. Asakura and T.
Imamoto, J. Am. Chem. Soc., 2000, 122, 7183; (e) M. Kitamura, M.
Tsukamoto, Y. Bessho, M. Yoshimura, U. Kobs, M. Widhalm and R.
Noyori, J. Am. Chem. Soc., 2002, 124, 6649.
55
Chem. 2011, 123, 9772 D. Rageot, D. H. Woodmansee, B. Pugin and
A. Pfaltz, Angew. Chem. Int. Ed., 2011, 50, 9598; (f) S.-F. Zhu, Y.-B.
Yu, S. Li, L.-X. Wang and Q.-L. Zhou, Angew. Chem. Int. Ed., 2012,
51, 8872; (g) M. Bernasconi, M.-A. Müller and A. Pfaltz, Angew.
Chem. Int. Ed., 2014, 53, 5385; (h) Y. Liu, I. D. Gridnev and W. Zhang,
Angew. Chem. Int. Ed., 2014, 53, 1901.
18 B. M. Trost, Chem.-Eur. J., 1998, 4, 2405.
60
6 (a) U. Leutenegger, A. Madin and A. Pfaltz, Angew. Chem., Int. Ed.
Engl., 1989, 28, 60; (b) C. Geiger, P. Kreitmeier and O. Reiser, Adv.
Synth. Catal., 2005, 347, 249.
135
65 7 (a) S. Monfette, Z. R. Turner, S. P. Semproni and P. J. Chirik, J. Am.
Chem. Soc., 2012, 134, 4561; (b) M. R. Friedfeld, M. Shevlin, J. M.
Hoyt, S. W. Krska, M. T. Tudge and P. J. Chirik, Science, 2013, 342,
1076; (c) R. P. Yu, J. M. Darmon, C. Milsmann, G. W. Margulieux, S.
C. E. Stieber, S. DeBeer and P. J. Chirik, J. Am. Chem. Soc., 2013, 135,
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3