Organocatalytic Asymmetric Sulfa-Michael Addition to a,b-Unsaturated Ketones
COMMUNICATIONS
tandem sulfa-Michael/aldol sequences, see: e) L. Zu, J.
Wang, H. Li, H. Xie, W. Jiang, W. Wang, J. Am. Chem.
Soc. 2007, 129, 1036.
[12] For recent use of primary amines in the activation of
ketones via enamine catalysis, see: a) S. B. Tsogoeva, S.
Wei, Chem. Commun. 2006, 1451; b) H. Huang, E. N.
Jacobsen, J. Am. Chem. Soc. 2006, 128, 7170; for the
use of primary amine salts in asymmetric iminium-ion
catalysis with enones, see: c) H. Kim, C. Yen, P. Pres-
ton, J. Chin, Org. Lett. 2006, 8, 5239; see also Ref.[11]
[13] a) S. Mayer, B. List, Angew. Chem. 2006, 118, 4299;
Angew. Chem. Int. Ed. 2006, 45, 4193; b) N. J. A.
Martin, B. List, J. Am. Chem. Soc. 2006, 128, 13368.
[14] The results obtained by using9-amino-(9-deoxy)- epi-
hydroquinine in combination with different counterions
(TFA, p-TSA, l-N-Boc-phenylalanine) in the organoca-
talyzed SMA did not bringany appreciable improve-
ment in terms of enantioselectivity, confirmingthe su-
perior efficiency of the catalytic salt A.
[15] Consideringthe relative high acidity of phenyl thiol 1a,
its Michael addition to 2a could be easily promoted by
weak bases, see Ref.[16] Since the catalyst amine compo-
nent 9-amino-(9-deoxy)-epi-hydroquinine has three
basic nitrogen atoms, a Brønsted base-catalyzed back-
ground reaction, affecting the stereoselectivity of the
process, could be envisaged. As interestingly suggested
by one reviewer, the use of 3 equivs. of d-N-Boc-phe-
nylalanine as the acidic additive to avoid this parasitic
reaction has been investigated, resulting in only a slight
enhancement of enantioselectivity: T=À108C, 30 h re-
action time, 80% conversion, 62% ee (compare to
entry 2, Table 1).
[6] For leadingreferences, see: a) E. Emori, T. Arai, H.
Sasai, M. Shibasaki, J. Am. Chem. Soc. 1998, 120, 4043;
for an organocatalytic asymmetric strategy, see: b) P.
McDaid, Y. Chen, L. Deng, Angew. Chem. 2002, 114,
348; Angew. Chem. Int. Ed. 2002, 41, 338; see also
Ref.[4b]
[7] a) M. Marigo, T. Schulte, J. FranzØn, K. A. Jørgensen,
J. Am. Chem. Soc. 2005, 127, 15710; for tandem sulfa-
Michael/aldol sequences, see: b) S. Brandau, E. Maert-
en, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128,
14986; c) W. Wang, H. Li, J. Wang, L. Zu, J. Am.
Chem. Soc. 2006, 128, 10354; d) R. Rios, H. SundØn, I.
Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Tetra-
hedron Lett. 2006, 47, 8547.
´
[8] a) J. Skarz˙ewski, M. Zielinska-Blajet, I. Turowska-Tyrk,
Tetrahedron: Asymmetry 2001, 12, 1923; b) H. Li, L.
Zu, J. Wang, W. Wang, Tetrahedron Lett. 2006, 47, 3145.
[9] For examples of sulfur-centered nucleophiles used in
asymmetric SMA that can be easily removed to afford
versatile SH functionality, see Refs.[7a,8b]
[10] a) G. Bartoli, M. Bosco, A. Carlone, F. Pesciaioli, L.
Sambri, P. Melchiorre, Org. Lett. 2007, 9, 1403; b) A.
Carlone, G. Bartoli, M. Bosco, F. Pesciaioli, P. Ricci, L.
Sambri, P. Melchiorre, Euro J. Org. Chem. 2007, 5492.
[11] Recently, 9-amino-(9-deoxy)-epi-Cinchona alkaloids in
combination with achiral acids were reported to be ef-
fective catalysts for the asymmetric conjugate addition
of carbon-centered nucleophiles to simple enones via
iminium ion catalysis: a) J.-W. Xie, W. Chen, R. Li, M.
Zeng, W. Du, L. Yue, Y.-C. Chen, Y. Wu, J. Zhu, J.-G.
Deng, Angew. Chem. 2007, 119, 393; Angew. Chem. Int.
Ed. 2007, 46, 389; b) J.-W. Xie, L. Yue, W. Chen, W.
Du, J. Zhu, J.-G. Deng, Y.-C. Chen, Org. Lett. 2007, 9,
413; c) W. Chen, W. Du, L. Yue, R. Li, Y. Wu, L.-S.
Ding, Y.-C. Chen, Org. Biomol. Chem. 2007, 5, 816; for
a recent ACDC approach with a multifunctional pri-
mary amine, see: d) W. Chen, W. Du, Y.-Z. Duan, Y.
Wu, S.-Y. Yang, Y.-C. Chen, Angew. Chem. 2007, 119,
7811; Angew. Chem. Int. Ed. 2007, 46, 7667. For the use
in asymmetric enamine catalysis with ketones, see:
e) S. H. McCooey, S. J. Connon, Org. Lett. 2007, 9, 599;
f) T.-Y. Liu, H.-L. Cui, Y. Zhang, K. Jiang, W. Du, Z.-
Q. He, Y.-C. Chen, Org. Lett. 2007, 9, 3671; g) B.-L.
Zheng, Q.-Z. Liu, C.-S. Guo, X.-L. Wang, L. He, Org.
Biomol. Chem. 2007, 5, 2913.
[16] The potentiality of Cinchona alkaloids to act as bases
to deprotonate substrates with relatively acidic protons
such as thiols, thus forminga contact ion-pair between
the resultinganion and the protonated quinuclidine
moiety, is well established, see Refs.[4b,6b]
[17] For a similar behavior in ACDC activation strategy, see
Ref.[13b]
[18] T. W. Greene, P. G. M Wuts, Protective Groups in Or-
ganic Synthesis, 3rd edn., Wiley-VCH, New York, 1999,
chapter 6, p 454.
[19] a,b-Unsaturated ketone with R1 =Ph and R2 =Et gave
a sluggish reaction rate (27% conversion after 42 h), al-
though the product was formed in 90% ee at À308C in
the presence of 20 mol% of catalytic salt A.
[20] Achieving high levels of generality and selectivity in
asymmetric SMA under catalytic conditions is rather
challenging, as methods that provide regularly high
enantioselectivity (ees above 90%) are scarce; see
Refs.[6b,7a–c]
Adv. Synth. Catal. 2008, 350, 49 – 53
ꢀ 2008 Wiley-VCH VerlagGmbH & Co. KGaA, Weinheim
53