A. H. Brivanlou and A. Libchaber, Science, 2002, 298, 1759;
(e) J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon,
Nat. Biotechnol., 2003, 21, 47; (f) J. Zheng, J. T. Petty and
R. M. Dickson, J. Am. Chem. Soc., 2003, 125, 7780;
(g) D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark,
M. P. Bruchez, F. W. Wise and W. W. Webb, Science, 2003, 300,
1434; (h) P. Alivisatos, Nat. Biotechnol., 2004, 22, 47;
(i) I. L. Medintz, H. T. Uyeda, E. R. Goldman and
H. Mattoussi, Nat. Mater., 2005, 4, 435; (j) A. P. Alivisatos,
W. W. Gu and C. Larabell, Annu. Rev. Biomed. Eng., 2005, 7,
55; (k) X. Michalet, F. F. Pinaud, L. A. Bentolina, J. M. Tsay,
S. Doose, J. J. Li, G. Sanderason, A. M. Wu, S. S. Gambhir and
S. Weiss, Science, 2005, 307, 538; (l) J. Yang, S. R. Dave and
X. Gao, J. Am. Chem. Soc., 2008, 130, 5286.
2 (a) M. Bruchez, M. Moronne, P. Gin, S. Weiss and
A. P. Alivisatos, Science, 1998, 281, 2013; (b) W. C. W. Chan
and S. M. Nie, Science, 1998, 281, 2016; (c) X. Y. Wu, H. J. Liu,
J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge,
F. Peale and M. P. Brunchez, Nat. Biotechnol., 2003, 21, 41;
(d) X. Gao, Y. Cui, R. M. Levenson, L. W. K. chung and
S. M. Nie, Nat. Biotechnol., 2004, 22, 969.
3 J. Yao, D. R. Larson, H. D. Vishwasrao, W. R.
Zipfel and W. W. Webb, Proc. Natl. Acad. Sci. USA, 2005, 102,
14284.
Fig. 3 Representative single particle time-traces from each batch.
After photo-hardening, the nanoparticles remain quite bright, with the
2.4% sample still 50 times brighter than a single monomer after 8 min
of continuous excitation. Inset: Single PDI time-trace under identical
excitation power exhibits significantly lower intensity, photo-blinking,
and eventual photo-bleaching.
4 (a) A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Nano Lett.,
2004, 4, 11; (b) C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino,
A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig and W. J. Parak,
Nano Lett., 2005, 5, 331.
2.4% nanoparticle is initially over 220 times brighter than a
single monomer) which initially decays quickly due to photo-
bleaching. Interestingly, this initial steep decay weeds out the
‘‘non-photostable’’ fluorophores and eventually only the most
photostable fluorophores remain. Even in this photo-hardened
state, the nanoparticles remain quite bright, with the 2.4%
sample still emitting more than 50 times brighter fluorescence
than a single monomer after 8 min of continuous laser
irradiation. To the best of our knowledge, this is the brightest
nanoparticle (diameter o50 nm) determined experimentally
by single-particle methods.
5 (a) W. Schartl, Adv. Mater., 2000, 12, 1899; (b) S. Santra, P. Zhang,
¨
K. Wang, R. Tapec and W. Tan, Anal. Chem., 2001, 73, 4988;
(c) S. Santra, K. Wang, R. Tapec and W. Tan, J. Biomed. Opt.,
2001, 6, 1; (d) P. Schuetz and F. Caruso, Chem. Mater., 2002, 14,
4509; (e) R. Tapec, X. J. Zhao and W. H. Tan, J. Nanosci.
Nanotechnol., 2002, 2, 405; (f) X. He, K. Wang, W. Tan, B. Liu,
X. Lin, C. He, D. Li, S. Huang and J. Li, J. Am. Chem. Soc., 2003,
125, 7168; (g) X. Zhao, R. Tapec and W. Tan, J. Am. Chem. Soc.,
2003, 125, 11474; (h) H. Ow, D. R. Larson, M. Srivastava,
B. A. Baird, W. W. Webb and U. Wiesner, Nano Lett., 2005, 5,
113; (i) C. F. Wu, Y. L. Zheng, C. Szymanski and J. McNeill,
J. Phys. Chem. B, 2008, 112, 1772.
6 (a) X. J. Zhao, R. P. Bagwe and W. H. Tan, Adv. Mater., 2004, 16,
173; (b) W. Lian, S. A. Litherland, H. Badrane, W. H. Tan,
D. H. Wu, H. V. Baker, P. A. Gulig, D. V. Lim and S. G. Jin,
Anal. Biochem., 2004, 334, 135; (c) C. F. Wu, C. Szymanski and
J. McNeill, Langmuir, 2006, 22, 2956; (d) J. Zhang, I. Gryczynski,
Z. Gryczynski and J. R. Lakowicz, J. Phys. Chem. B, 2006, 110,
8986; (e) C. F. Wu, C. Szymanski, Z. Cain and J. McNeill, J. Am.
Chem. Soc., 2007, 129, 12904.
7 (a) L. A. Kolodny, D. M. Willard, L. L. Carillo, M. W. Nelon and
Orden A. Van, Anal. Chem., 2001, 73, 1959; (b) S. Hohng and
T. Ha, ChemPhysChem, 2005, 6, 956; (c) J. K. Grey, D. Y. Kim,
B. C. Norris, W. L. Miller and P. F. Barbara, J. Phys. Chem. B,
2006, 110, 25568; (d) D. R. Larson, H. Ow, H. D. Vishwasrao,
A. A. Heikal, U. Wiesner and W. W. Webb, Chem. Mater., 2008,
20, 2677; (e) A. Fu, W. Gu, B. Boussert, K. Koski, D. Gerion,
L. Manna, M. L. Gros, C. A. Larabell and A. P. Alivisatos, Nano
Lett., 2007, 7, 179.
8 See ESIw for additional information.
9 A. D. Shaller, W. Wang, H.-Y. Gan and A. D. Q. Li, Angew.
Chem., Int. Ed., 2008, 47, 7705–7709.
10 (a) M. Q. Chen, A. Kishida and M. Akashi, J. Polym. Sci., Part A:
Polym. Chem., 1996, 34, 2213; (b) K. Ishizu, M. Yamashita and
A. Ichimura, Polymer, 1997, 38, 5471; (c) M. Q. Zhu, L. Y. Zhu,
J. J. Han, W. W. Wu, J. K. Hurst and A. D. Q. Li, J. Am. Chem.
Soc., 2006, 128, 4303.
In conclusion, we have successfully prepared polymeric
nanoparticles with high fluorescent brightness and excellent
photostability by covalently embedding a twisted perylene dye
into core–shell type polymeric nanoparticles. The high photo-
stability, quantum yield, and unique steric structure of the
perylene monomer, coupled with high monomer concentration
and core-shell encapsulation enabled by covalent attachment,
are believed to mainly contribute to the remarkable brightness
and improved photostability. These facile, ultrabright probes
ultimately advance the capability for practical applications
in live cell imaging, biosensing and in the development of
optoelectronic nanodevices.
Notes and references
1 (a) H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson,
V. C. Sundar, F. V. Mikulec and M. G. Bawendi, J. Am. Chem.
Soc., 2000, 122, 12142; (b) D. Gerion, F. Pinaud, S. C. Williams,
W. J. Parak, D. Zanchet, S. Weiss and P. Alivisatos, J. Phys.
Chem. B, 2001, 105, 8861; (c) W. Chan, D. J. Maxwell, X. H. Gao,
R. E. Han and S. Nie, Curr. Opin. Biotechnol., 2002, 13, 40;
(d) B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux,
ꢀc
This journal is The Royal Society of Chemistry 2009
182 | Chem. Commun., 2009, 180–182