allows these MCHEF sensors to visualize the change of Zn2+
concentration, but they cannot provide quantified information
about [Zn2+]free. Ratiometric Zn2+ sensors are capable of
overcoming this problem because Zn2+ binding to them
induces shift in excitation or emission maxima, and internal
calibration can be achieved by measuring the ratio of apo-
sensor and Zn2+-bound sensor. Then, not only the environ-
ment-dependence but also the artifacts caused by the
variations in excitation intensity, emission collection ef-
ficiency, and photobleaching can be largely reduced by
internal calibration. However, ratiometric fluorescent Zn2+
sensors suitable for practical intracellular Zn2+ imaging are
rare so far,10 due to the scarcity of suitable fluorophore
prototypes displaying zinc chelation-induced emission/excita-
tion shift.10,11 Therefore, there is a huge scope and potential
for exploring novel fluorophores for ratiometric Zn2+ sensing.
A common fluorophore, 2-(2′-pyridinyl)benzoimidazole (2-
PBI), is widely used in coordination chemistry for its ability
to bind an array of d- and f-block elements. It is able to act
as both fluorophore and ionophore for Zn2+ and displays a
specific emission shift in both aqueous and acetonitrile
solution owing to Zn2+-chelation via 2, 2′-N atoms. However,
2-PBI fails to qualify as a ratiometric Zn2+ sensor due to
the low Zn2+ binding affinity and variable Zn2+ binding
modes.12 Increasing the Zn2+ coordination number of 2-PBI
could enhance the Zn2+ binding ability and define the Zn2+
binding mode, which will be favorable for the construction
of practical Zn2+ ratiometric sensors.
incorporated with 2-PBI at its 3′-position as the synergic Zn2+
coordination motif of its 2,2′-N atoms. Then, both 1:1 Zn2+
binding mode and higher Zn2+ binding affinity were ex-
pected. The synthetic procedure of PBITA is depicted in
Scheme 1. A refluxing ethanol solution containing o-
Scheme 1. Synthesis of PBITA
phenylenediamine and 6-(hydroxymethyl)pyridine-2-carbal-
dehyde in the presence of NaHSO3 afforded compound 1,
and PBITA was obtained with satisfactory yield by reacting
the tosylated derivative of 1 with BPA in CH3CN in the
presence of K2CO3 (Supporting Information).
The metal-binding behavior of PBITA has been deter-
mined by UV-vis and fluorescence spectroscopic studies.
Although PBITA is not highly water soluble, it can be
dissolved in water when 10% (v/v) of DMSO was added
and all the following studies were carried out in aqueous
solution containing 10% DMSO. This protocol is commonly
used in many reported Zn2+ sensors for intracellular Zn2+
imaging.9h-j,10b The UV-vis spectrum of PBITA in HEPES
buffer exhibits a maximal absorption band centered at 312
nm (ε ) 9.2 × 104 M-1 cm-1) with a shoulder band at 327
nm (Figure S4, Supporting Information). When titrated by
Zn2+ (0 - 2 equiv), the intensity of the maximal absorption
band decreased with the concomitant increase of the shoulder
band. The presence of a clear isobestic point implies the
conversion of free PBITA sensor to the only Zn2+ complex.
The titration profile can be drawn from the absorbance
changes at 312 nm, which suggests a 1:1 Zn2+ binding mode
of PBITA. The stoichiometry of the Zn2+/PBITA complex
has also been confirmed by mass spectroscopic determina-
tion. The electrospray ionization mass spectrum of this
complex displays two signals of m/z 235.16 and 469.25,
which can be assigned as the signals for [M + Zn - H]+
Herein, a fluorescent sensor derived from the 2-PBI
platform, PBITA, was prepared. In this compound, the Zn2+
chelator bis(pyridin-2-ylmethyl)amine (BPA) moiety was
(8) Berg, J. M.; Shi, Y.; Que, E. L.; Domaille, D. W.; Chang, C. J.
Chem. ReV. 2008, 108, 1517–1549
.
(9) (a) Komatsu, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T.
J. Am. Chem. Soc. 2005, 127, 10197–10204. (b) Chang, C. J.; Nolan, E. M.;
Jaworski, J.; Burdette, S. C.; Sheng, M.; Lippard, S. J. Chem. Biol. 2004,
11, 203–210. (c) Nolan, E. M.; Ryu, J. W.; Jaworski, J.; Feazell, R. P.;
Sheng, M.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 15517–15528. (d)
Tang, B.; Huang, H.; Xu, K. H.; Tong, L. L.; Yang, G. W.; Liu, X.; An,
L. G. Chem. Commun. 2006, 3609–3611. (e) Gong, H.-Y.; Zheng, Q.-Y.;
Zhang, X.-H.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2006, 8, 4895–4898.
(f) Liu, Y.; Zhang, N.; Chen, Y.; Wang, L.-H. Org. Lett. 2007, 9, 315–
318. (g) Wang, H.-H.; Gan, Q.; Wang, X.-J.; Xue, L.; Liu, S.-H.; Jiang, H.
Org. Lett. 2007, 9, 4995–4998. (h) Nasir, M. S.; Fahrni, C. J.; Suhy, D. A.;
Kolodsick, K. J.; Singer, C. P.; O’Halloran, T. V. J. Biol. Inorg. Chem.
1999, 4, 775–783. (i) Fahrni, C. J.; O’Halloran, T. V. J. Am. Chem. Soc.
1999, 121, 11448–11458. (j) Jiang, P.; Chen, L.; Lin, J.; Liu, Q.; Ding, J.;
Gao, X.; Guo, Z. Chem. Commun. 2002, 1424–1425
.
(10) (a) Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T.
J. Am. Chem. Soc. 2002, 124, 10650–10651. (b) Taki, M.; Wolford, J. L.;
O’Halloran, T. V. J. Am. Chem. Soc. 2004, 126, 712–713. (c) Chang, C. J.;
Jaworski, J.; Nolan, E. M.; Sheng, M.; Lippard, S. J. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 1129–1134
.
(11) (a) Woodroofe, C. C.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125,
11458–11459. (b) Henary, M. M.; Wu, Y.; Fahrni, C. J. Chem.sEur. J.
2004, 10, 3015–3025. (c) Lim, N. C.; Schuster, J. V.; Porto, M. C.; Tanudra,
M. A.; Yao, L. L.; Freake, H. C.; Bruckner, C. Inorg. Chem. 2005, 44,
2018–2030. (d) Ajayaghosh, A.; Carol, P.; Sreejith, S. J. Am. Chem. Soc.
2005, 127, 14962–14963. (e) Mei, Y. J.; Bentley, P. A. Bioorg. Med. Chem.
Lett. 2006, 16, 3131–3134. (f) Huang, S.; Clark, R. J.; Zhu, L. Org. Lett.
2007, 9, 4999–5002. (g) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T.
J. Am. Chem. Soc. 2007, 129, 13447–13454. (h) Zhang, Y.; Guo, X.; Si,
1
and [M + Zn]2+, respectively. The H NMR data provided
further evidence for the 1:1 binding ratio (Figure S7,
Supporting Information). All the aromatic and alkyl protons
of PBITA showed evident chemical shift changes in the
titration experiment, suggesting the involvement of 2,2′-N
atoms of 2-PBI and all the N atoms of the BPA motif in
Zn2+ coordination.
W.; Jia, L.; Qian, X. Org. Lett. 2008, 10, 473–476
.
(12) (a) Wang, C.; Li, Z.; Du, C.; Wang, P. J. Coord. Chem. 2008, 61,
760–767. (b) Haneda, S.; Gan, Z.; Eda, K.; Hayashi, M. Organomet. 2007,
26, 6551–6555. (c) Si, Z.; Li, J.; Li, B.; Zhao, F.; Liu, S.; Li, W. Inorg.
Chem. 2007, 46, 6155–6163. (d) Liu, Q.-D.; Jia, W.-L.; Wang, S. Inorg.
Chem. 2005, 44, 1332–1343.
Free PBITA in neutral HEPES buffer (DMSO/water )
1:9, v/v) exhibits weak fluorescence with two emission bands
796
Org. Lett., Vol. 11, No. 4, 2009