L. D. S. Yadav, A. Rai / Tetrahedron Letters 50 (2009) 640–643
643
Table 2 (continued)
Entry
Aldehyde 1
Nucleophile (TMSCN/NH4SCN)
Product 2 or 3
Timea (h)
Yieldb,c (%)
CHO
NCS
NO2
H
13
NH4SCN
NH4SCN
9
85
90
4 H3 COC6H4
3f
OCH3
NCS
NO2
H
CHO
F
14
7
2 FC6H4
3g
a
Stirring time at 85–90 °C.
b
c
Yield of isolated and purified products.
All compounds gave C, H and N analyses within 0.37% and satisfactory spectral (IR, 1H NMR, 13C NMR and EIMS) data.
27. Shahidi, F. In Sulphur Compounds in Foods; Mussinan, C. J., Keelan, M. E., Eds.;
American Chemical Society: Washington, DC, 1994; p 106. Chapter 9.
28. Mehta, R. G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.;
Gerhaeuser, C.; Pezzuto, J. M.; Moon, R. C.; Moriarty, R. M. Carcinogenesis 1995,
16, 399.
nent coupling of aldehydes, nitromethane and TMSCN/NH4SCN
using ionic liquid as an efficient promoter. The present protocol
for the synthesis of various functionalized nitroalkanes has high
potential for its application in organic chemistry.
29. (a) Gross, Z.; Hoz, S. J. Am. Chem. Soc. 1988, 110, 7489; (b) Russell, G. A.;
Dedolph, D. J. Org. Chem. 1985, 50, 3878.
30. (a) Yadav, L. D. S.; Yadav, S.; Rai, V. K. Tetrahedron 2006, 62, 5464; (b) Yadav, L. D.
S.; Yadav, S.; Rai, V. K. GreenChem. 2006, 8, 455; (c)Yadav, L. D. S.; Rai, A.; Rai, V. K.;
Awasthi, C. Synlett 2007, 1905; (d) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A.
Tetrahedron Lett. 2007, 48, 4899; (e) Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C.
Tetrahedron 2008, 64, 1420; (f) Yadav, L. D. S.; Patel, R.; Srivastava, V. P. Synlett
2008, 0583; (g) Yadav, L. D. S.; Rai, A. Tetrahedron Lett. 2008, 49, 5751.
31. Yan, S.; Gao, Y.; Xing, R.; Shen, Y.; Liu, Y.; Wu, P.; Wu, H. Tetrahedron 2008, 64, 6294.
32. Jang, Y.-J.; Lin, W.-W.; Shih, Y.-K.; Liu, J.-T.; Hwang, M.-H.; Yao, C. -F.
Tetrahedron 2003, 59, 4979.
Acknowledgement
We sincerely thank SAIF, Punjab University, Chandigarh, for
providing microanalyses and spectra.
References and notes
33. (a) Ranu, B. C.; Banerjee, S. Org. Lett. 2005, 7, 3049; (b) Ranu, B. C.; Jana, R.;
Sowniah, S. J. Org. Chem. 2007, 72, 3152.
1. Trost, B. M.. Science 1991, 254, 1471.
2. Bienayme, H.; Hulme, C.; Oddon, G.; Schmidt, P. Chem. Eur. J. 2000, 6, 3321.
3. von Wangelin, A. J.; Neumann, H.; Gördes, D.; Klaus, S.; Strubing, D.; Beller, M.
Chem. Eur. J. 2003, 9, 4286.
34. General procedure for the synthesis of b-nitrocarbonitriles 2: A mixture of an
aromatic aldehyde (1 mmol), nitromethane (1 mmol), TMSCN (1 mmol) and
[bmim]OH (20 mol %) in acetonitrile (5 ml) was stirred at 85–90 °C for an
appropriate time of 6–9 h (Table 2). After completion of the reaction (monitored
by TLC), water (10 mL) was added and the product was extracted with diethyl
ether (3 Â 15 mL). The combined extract was dried over Na2SO4, filtered,
concentrated under reduced pressure, and the crude product thus obtained was
purified by silica gel column chromatography using ethyl acetate–n-hexane
(1:9) as eluate to afford an analytically pure sample of 2. The remaining ionic
liquid was rinsed with ether (2 ml), dried under vacuum at 90 °C for 2 h to
eliminate any water trapped and reused for subsequent runs.33 Physical data of
representative compounds: Compound 2a: yellowish solid, yield 83%, mp 89 °C.
4. Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471.
5. (a) Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363; (b) Bao,
W.; Wang, Z. Green Chem. 2006, 8, 1028; (c) Zhao, D.; Wu, M.; Kou, Y.; Min, E.
Catal. Today 2002, 74, 157; (d) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem.
Rev. 2002, 102, 3667; (e) Qiao, K.; Yakoyama, C. Chem. Lett. 2004, 33, 472; (f)
Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron Lett. 2003, 44, 2409; (g) Kamal, A.;
Chouhan, G. Tetrahedron Lett. 2005, 46, 1489; (h) Earle, M. J.; Katdare, S. P.;
Seddon, K. R. Org. Lett. 2004, 6, 707.
6. Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
7. (a) Ballini, R.; Rosini, G. Synthesis 1988, 833; (b) Rosini, G.; Ballini, R.; Petrini, M.;
Marotta, E.; Righi, P. Org. Prep. Proc. Int. 1990, 22, 707; (c) Ballini, R.; Marziali, P.;
Mozzicafreddo, A. J. Org. Chem. 1996, 61, 3209; (d) Ballini, R.; Bosica, G.
Tetrahedron Lett. 1996, 37, 8027; (e) Ballini, R.; Bosica, G. J. Org. Chem. 1997, 62,
425; (f) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017; (g) Amantini, D.;
Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, C. J. Org. Chem. 2003, 68, 9263; (h)
Marotta, E.; Righi, P.; Rosini, G. Tetrahedron Lett. 1998, 39, 1041; (i) Areces, P.; Gil,
M. V.; Higes, F. J.; Romàn, E.; Serrano, J. A. Tetrahedron Lett. 1998, 39, 8557.
8. Pinnick, H. W. Org. React. 1990, 38, 655.
IR (KBr) m .
max 3005, 2988, 2240, 1600, 1582, 1565, 1451, 753, 705 cmÀ1 1H NMR
(400 MHz; CDCl3) d: 3.92 (dd, 1H, J = 8.5, 4.7 Hz, CHCN), 4.60 (dd, 1H, J = 12.8,
4.7 Hz, CHaNO2), 4.97 (dd, 1H, J = 12.8, 8.5 Hz, CHbNO2), 7.25–7.49 (m, 5Harom).
13C NMR (100 MHz; CDCl3) d: 26.9, 77.2, 121.2, 127.3, 128.4, 129.2, 130.9. EIMS
(m/z) 176 (M+). Anal. Calcd for C9H8N2O2: C, 61.36; H, 4.58; N, 15.90. Found: C,
61.05; H, 4.72; N, 15.65.Compound 2d: Yellowish solid, yield 92%, mp 91 °C. IR
(KBr) mmax 3008, 2983, 2245, 1602, 1581, 1563, 1454, 752, 703 cmÀ1 1H NMR
.
(400 MHz; CDCl3) d: 3.98 (dd, 1H, J = 8.7, 4.8 Hz, CHCN), 4.64 (dd, 1H, J = 12.9,
4.8 Hz, CHaNO2), 4.99 (dd, 1H, J = 12.9, 8.7 Hz, CHbNO2), 7.21–7.25 (m, 2Harom),
7.33–7.46 (m, 2Harom.). 13C NMR (100 MHz; CDCl3) d: 25.7, 78.1, 120.8, 12.7,
129.1, 140.1, 148.3. EIMS (m/z) 221 (M+). Anal. Calcd for C9H7N3O4: C, 48.87; H,
3.19; N, 19.00. Found: C, 49.24; H, 3.04; N, 19.27.
9. Schwartz, J. B. et al J. Med. Chem. 2005, 48, 3026.
10. Xi, F.; Kamal, F.; Schenerman, M. A. Tetrahedron Lett. 2002, 43, 1395.
11. Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2113.
12. Davis, B.; Brandstetter, T. W.; Smith, C.; Hackett, L.; Winchester, B. G.; Fleet, G.
W. J. Tetrahedron Lett. 1995, 36, 7507.
13. Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed 2007, 46, 4519.
14. Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002, 102, 1771.
15. Collier, S. J.; Langer, P.. In Science of Synthesis; Georg Thieme: Stuttgart, 2004;
Vol. 19, p 403.
35. General procedure for the synthesis of b-nitrothiocyanates 3: The procedure
followed was the same as described above for the synthesis of 2 (Ref. 34) except
that NH4SCN (1 mmol) was used instead of TMSCN (1 mmol). The crude product
thus obtained was purified by silica gel column chromatography using ethyl
acetate–n-hexane (2:8) as eluate to afford an analytically pure sample of 3. The
remaining ionic liquid was recycled for subsequent runs as described above.33
Physical data of representative compounds: Compound 3a: pale yellow oil, yield
16. Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358, 1.
17. Wang, M.-X. Top. Catal. 2005, 35, 117.
86%. IR (KBr) m .
max 3010, 2985, 2143, 1605, 1585, 1562, 1450, 748, 708 cmÀ1 1H
18. Brown, H. C.; Choi, Y. M.; Narasimhan, S. Synthesis 1981, 605.
19. Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
20. Yadav, V. K.; Babu, K. G. Eur. J. Org. Chem. 2005, 452.
21. Sharifi, A.; Mohsenzadeh, F.; Mojtahedi, M. M.; Saidi, M. R.; Balalaie, S. Synth.
Commun. 2001, 31, 431.
22. Caddick, S.; Judd, D. B.; Lewis, A. K. deK.; Reich, M. T.; Williams, M. R. V.
Tetrahedron 2003, 59, 5417.
23. Jayachitra, G.; Yasmeen, N.; Rao, K. S.; Ralte, S. L.; Srinivasan, R.; Singh, A. K.
NMR (400 MHz; CDCl3) d: 3.85 (dd, 1H, J = 8.4, 4.3 Hz, CHCN), 4.63 (dd, 1H,
J = 12.7, 4.3 Hz, CHaNO2), 4.96 (dd, 1H, J = 12.7, 8.4 Hz, CHbNO2), 7.25–7.49 (m,
5Harom). 13C NMR (100 MHz; CDCl3) d: 39.5, 85.7, 112.8, 126.5, 128.2, 129.6,
148.3. EIMS (m/z) 208 (M+). Anal. Calcd for C9H8N2O2S: C, 51.91; H, 3.87; N, 13.45.
Found: C, 51.72; H,3.98; N, 13.78.Compound 3d: Pale yellow oil, yield 94%. IR
(KBr) mmax 3012, 2987, 2148, 1603, 1589, 1559, 1453, 751, 710 cmÀ1 1H NMR
.
(400 MHz; CDCl3) d: 3.89 (t, 1H, J = 8.9, 4.5 Hz, CHCN), 4.66 (dd, 1H, J = 12.8,
4.5 Hz, CHaNO2), 4.81 (dd, 1H, J = 12.8, 8.95 Hz, CHbNO2), 7.19–7.23 (m, 2Harom),
7.32–7.48 (m, 2Harom). 13C NMR (100 MHz; CDCl3) d: 42.6, 84.2, 112.4, 120.7,
12.9, 128.5, 146.8. EIMS (m/z) 253 (M+). Anal. Calcd for C9H7N3O4S: C, 42.69; H,
2.79; N, 16.59. Found: C, 42.40; H, 2.98; N, 16.44.
Synth. Commun. 2003, 33, 3461.
24. Guy, R. G. In The Chemistry of the Cyanates and Their Thio Derivatives; Patai, S.,
Ed.; Wiley-Interscience: New York, 1977; p 819.
25. Comprehensive Heterocyclic Chemistry; Metzer, J. B., Katritzky, A., Eds.;
Pergamon: Oxford, 1984; Vol. 6, p 235.
36. Lancaster, N. L.; Salter, P. A.; Welton, T.; Young, G. B. J. Org. Chem. 2002, 67, 8855.
37. Creary, X.; Willis, E. D. Org. Synth. 2005, 82, 166.
26. Kawamura, S.; Izumi, K.; Satoh, J.; Sanemitsu, Y.; Hamada, T.; Shibata, H.; Satoh,
R. Eur. Pat. 1991, Appl E.P. 446802; Chem. Abstr. 1992, 116, 59360j.
38. Duport, J.; Consorti, C. S.; Swarez, P. A. Z.; de Souza, R. F. Org. Synth. 2004, 10,
184; . Org. Synth. 2002, 79, 236.